
Effects of Faulty Knowledge Engineering
on Structured Classification Learning

Joshua Jones
University of Maryland, Baltimore County

Baltimore, MD 21230
jkj@umbc.edu

Ashok Goel
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332
goel@cc.gatech.edu

Abstract

Past research has shown that when tree-structured back-
ground knowledge is available, it can be exploited to increase
the efficiency of classification learning. When this kind of
background knowledge is available, the problem becomes
one of compositional classification. Of course, if the back-
ground knowledge contains errors, the quality of the learned
hypothesis will suffer. In this paper we study the effect of
faulty knowledge engineering on compositional classifica-
tion learning. We present and analyze empirical results that
show the impact on the quality of compositional classification
learning as the quality of knowledge engineering is degraded.

Introduction
In order to enable efficient and practical learning in the con-
text of complex, high-dimensional learning problems, the
machine learning community has increasingly embraced the
use of various kinds of knowledge-based bias (e.g. (Di-
etterich 2000) (Marthi, Russell, and Latham 2005) (Ulam,
Jones, and Goel 2008) (Mitchell and Thrun 1993) (Towell
and Shavlik 1994) (Whiteson et al. 2005) (Pearl 1988)).
While the use of prior knowledge to bias learning can be
highly effective in increasing the generalization power and
efficiency of a learning algorithm, the risk is that errors in
this background knowledge will hamper the learning pro-
cess. Faulty background knowledge is likely to decrease the
quality of the final hypothesis selected by the learning al-
gorithm and/or the efficiency of the learning, as improper
generalizations may be made and allowable generalizations
may be missed. Our goal in the research described here is
to develop a better understanding of the degree of risk in-
volved in biasing a learning process with potentially fallible
background knowledge.

Here we are specifically concerned with compositional
classification (Jones and Goel 2009), where prior knowledge
in the form of a tree structure of classification subproblems
is given, and where both the top level class label and the out-
put values of the subproblems can be obtained during learn-
ing (but are not known to the knowledge engineer, and thus
cannot be hard-coded). Past research has shown that when
tree-structured background knowledge is available, it can be
exploited to increase the efficiency of learning (Tadepalli
and Russell 1998). Below we first describe compositional

classification more formally. We then explain the frame-
work for compositional classification learning that we have
implemented, and with which the experiments described in
this paper were performed (Jones and Goel 2008). We call
this framework for compositional classification learning ab-
straction networks (ANs) and refer to our implemented sys-
tem as Augur. We then turn to a discussion of two experi-
ments performed to test the effects of faulty knowledge en-
gineering in this setting.

Compositional Classification
Informally, a compositional classification problem is one in
which a hierarchy of intermediate abstractions mediating be-
tween raw, observable state (the input feature vector) and
the target classification can reasonably be elaborated. These
intermediate abstractions are higher level concepts that are
more abstract than raw state but less abstract than the target
classification. In this work we require that the values of all of
these intermediate abstractions be obtainable during learn-
ing. The structure of these intermediate abstractions forms
the background knowledge (provided by a knowledge engi-
neer) that will be provided to our learner. This type of back-
ground knowledge is similar to that provided in other learn-
ing techniques, such as Bayesian Networks (Pearl 1988) and
Tree-Structured Bias (Russell 1988) (Tadepalli and Russell
1998). Further, research in knowledge-based artificial intel-
ligence has indicated that this type of background knowl-
edge is frequently available in classification (Goel and By-
lander 1989) (Bylander, Johnson, and Goel 1991) (Chan-
drasekaran 1993).

To more formally describe compositional classification,
let T be a discrete random variable representing the class
label. Let S = {s : s is empirically determinable and
h[T ] > h[T |s]}, where h[x] denotes the entropy of x. S
is a set of discrete random variables that have nonzero mu-
tual information with the class label and are empirically de-
terminable, meaning that there is some way to interact with
the environment to determine which value has been taken by
each member of S, though in general this interaction will not
be possible until some time after the classification has been
produced. This means that the environment acts as an oracle
for these intermediate classifications, allowing the learner to
obtain their true values during learning. Each member s of
S represents a related set of equivalence classes, where each

32



value taken by s is a unique equivalence class. A task in-
stance is generated by jointly sampling the variables in S∪T .
Compositional classification is the problem of predicting T
given some subset of S (the same subset from one problem
instance to the next). In order to make such predictions, our
learner will make use of a structured knowledge representa-
tion called an abstraction network, defined in the next sec-
tion. This representation will capture knowledge about the
relationships between variables in S. Learning is required if
the distributions P(s|K), s ∈ S ∪ T, K ⊆ S are not known,
but must instead be inferred from experience.

Abstraction Networks
Representation
Here we formally define the knowledge representation used
for the compositional classification task. The knowledge
structure contains a node for each s ∈ S ∪ T . These nodes
are connected in a hierarchy reflecting direct dependence re-
lationships organized according to background knowledge.
Each node will handle the subproblem of predicting the
value of the variable with which it is associated given the
values of its children.

Definition 1 Here, we will define a supervised classification
learner as a tuple 〈I, O, F, U〉, where I is a set of input
strings (input space), O is a set of output symbols (output
space), F is a function from I to O, and U is a function
from (i, o) : i ∈ I, o ∈ O to the set of supervised classifica-
tion learners that share the same input space I and out-
put space O. U is an update function that has the effect
of changing F based upon a training example. This update
function alters the hypothesis represented by the learner, im-
plementing an incremental learning procedure that will pro-
gressively change the learner’s hypothesis as examples are
presented.

Definition 2 An empirical verification procedure (EVP) is
a pair 〈E,O〉 where O is a set of output symbols (output
space) and E is an arbitrary, possibly branching sequence
of actions in the environment and observations from the en-
vironment concluding with the selection of an o ∈ O.

EVPs define interactions with the environment that are
used to obtain the true values of intermediate abstractions
during learning. Any output space O of an empirical verifi-
cation procedure is an empirically determinable set of equiv-
alence classes. So, a set of equivalence classes is empirically
determinable, as required of members of S in the definition
of compositional classification, if an empirical verification
procedure can be defined with an output space equal to that
set of classes.

Definition 3 An abstraction network is recursively defined
as follows. A tuple 〈∅, O, L, P, last input, last value〉 is
an Abstraction Network, where O is a set of output symbols,
L is a supervised classification learner, and P is an Empir-
ical Verification Procedure. last input and last value are
used to cache input and return values at AN nodes in order
to support the learning procedure (detailed below). A tuple
〈N, O, L, P, last input, last value〉 is an abstraction net-
work, where N is a set of abstraction networks. Let I be

the set of strings formable by imposing a fixed order on the
members of N and choosing exactly one output symbol from
each n ∈ N according to this order. The supervised classifi-
cation learner L has input space I and output space O, and
the Empirical Verification Procedure P has output space O.

When N is empty, L is trivial and has no use as the in-
put space is empty. In these cases (the leaves of the AN),
a value determination must always be made by invoking P ,
which must be possible before classification in the case of
AN leaves. Thus, the leaves of the AN form the subset of
S that will be provided as raw state inputs during classifica-
tion.

Reasoning
In a given task instance, the values of the leaf nodes are fixed
by observation. Each node with fixed inputs then produces
its prediction. This is repeated until the value of the class la-
bel is predicted by the root of the hierarchy. This procedure
is described in detail in Table 1.

Learning
At some time after classification, the true value of the class
label is obtained by the learner. If the value produced by
the hierarchy was correct, no further action is taken. Oth-
erwise, a diagnosis and learning procedure is followed. The
specifics of this procedure are dependent upon the character-
istics of the learner types that are used within nodes and the
specific problem setting. For the empirical results detailed
in this paper, the following procedure is used:
1. The true value of each child of the AN root is obtained

by executing the associated EVPs.
2. If the predictions of all children were correct, modify lo-

cal knowledge at the current node by invoking the local
supervised learner.

3. Otherwise, recursively repeat this procedure for each
child sub-AN that was found to have produced an incor-
rect prediction.

This procedure is described more formally in Table 2.
The procedure has a base case when the leaves are reached,
as their true values were obtained before classification, and
thus cannot be found to be incorrect. The procedure is opti-
mized to localize blame for classification errors using as few
probes as possible under certain assumptions about error (no
compensating faults) and the problem setting/learner type.

Experiments
We have performed two sets of experiments in a synthetic
domain intended to provide insight into the performance of
compositional classification learners when knowledge engi-
neering is imperfect. The environment in this domain con-
sists of a fixed abstraction network, over which no learning
will occur, that represents the correct, target content (and
structure) for the problem. Given this fixed AN, we then
create a separate learner AN that will be initialized with
incorrect knowledge content (and in some cases, incorrect
structure) and expected to learn to produce the same top-
level classifications as the fixed AN. This is implemented

33



Table 1: Reasoning procedure used to produce a predictive classification from an abstraction network a.

/* Values from Definition 3:
* a.N - a set of ANs. The children of ‘a’.
* a.P - the EVP for ‘a’.
* a.last input - the last input sequence provided to ‘a’.
* a.last value - the last value produced by ‘a’.
* a.L - the learner associated with ‘a’.
*
* Values from Definition 1:
* L.F - the learner’s inference function.
*
* Subfunctions used:
* push back(Vector i, Value V ):
* Appends the value provided as the second argument
* to the vector provided as the first.
*/

begin AN-reasoning(abstraction network a)
Vector i ← {}

/* If we are at a leaf, return the result of executing the local
* EVP. These values are the ‘‘inputs" to the AN inference process.*/

if a.N = ∅, return a.P

/* Otherwise, build the input vector for the local learner
* and return the result of applying it. */
forall n ∈ a.N:

push back(i,AN-reasoning(n))
a.last input ← i
a.last value ← a.L.F (i)
return a.last value

end

34



Table 2: Diagnosis and repair procedure used to correct knowledge stored in an abstraction network a.

/* Values from Definition 3:
* a.P - the EVP for ‘a’.
* a.last value - the last value produced by ‘a’.
* a.N - a set of ANs. The children of ‘a’.
* a.L - the learner associated with ‘a’.
* a.last input - the last input sequence provided to ‘a’.
*
* Values from Definition 1:
* L.U - the learner’s update (learning) function.

*/

begin AN-learning(abstraction network a)
Bool flag ← true
if a.P () = a.last value, return true
forall n ∈ a.N

if AN-learning(n) = false, flag ← false
if !flag, return false
a.L ← a.L.U((a.last input, a.P ()))
return false.

end

by initializing the knowledge content of both the fixed and
learner AN nodes separately with pseudo-random values.
The randomly-generated content of the fixed AN forms the
target knowledge for the learner AN. Training proceeds by
repeating the following steps:
1. Generating a pseudo-random sequence of floating point

numbers to serve as the observations for the input nodes
of the ANs.

2. Performing inference with the fixed AN, saving the val-
ues produced at each node.

3. Performing inference with the learner AN.
4. Performing EVP-based diagnosis and learning over the

learner AN as in the procedure described in Table 2.
In this synthetic domain, EVPs within the inputs of both

(fixed and learner) ANs are set up to quantize the floating
point observations. EVPs are not needed at non-leaf nodes
in the fixed AN, since no learning will occur. EVPs at non-
leaf nodes in the learning AN are set up to examine the saved
output value from the corresponding node in the fixed AN.

In all of these experiments, a binary AN hierarchy was
used, with level sizes 16-8-4-2-1. We allowed each node
in the hierarchy to produce 4 output values. Each non-leaf
node in the learner AN contained a kNN learner with a k-
value of 1. The results shown in this section are an average
of 20 randomized trials, each consisting of sequences of ran-
domly selected examples split into blocks of 100 for graph-
ing purposes. For the purposes of comparison, we also run
a baseline consisting of an unstructured kNN learner work-
ing on the same classification problem – the unstructured
learner receives the 16 quantized input values and learns to
produce the same target values as the AN learner. In the
first of these experiments, specific nodes are ablated from
within the learner AN, connecting the child nodes of the re-

moved node to the parent node of the removed node. In these
experiments, no input information is lost through the node
removals (inputs are never ablated), but we expect the hy-
pothesis space restriction imposed by the AN structure to be
diminished, and thus the efficiency of learning to decrease.
This expectation is indeed borne out by the experiments,
summarized in Figure 1. In these experiments, we still reach
or approach zero error, as expected because, when learners
capable of expressing any function (such as kNN learners)
are used within nodes, the correct hypothesis is never elimi-
nated from those expressible by the AN through this kind of
ablation. However, the learning rate is negatively impacted
as the restriction bias imposed by the AN is reduced. The
keys for the graphs in this section refer to the location of
nodes ablated by level. We consider leaf nodes to be level
0, the direct parents of leaf nodes to be level 1, etc. This
notation is possible because of the balanced binary struc-
ture used in these experiments. An interesting note about
these results is that, when ablating a single node, it appears
to make no significant difference at which level of the hi-
erarchy the node is removed. This suggests that impact on
overall hypothesis space size is not dependent upon a con-
cept’s level of abstraction.

In the second set of experiments, whole subtrees beneath
a selected node (or nodes) are pruned from the learner AN.
This kind of ablation actually has the effect of increasing the
restriction bias of the AN, as all hypotheses dependent upon
the inputs beneath the ablated node are no longer express-
ible at all. The problem, of course, is that the restriction
bias is likely to have now excluded the correct hypothesis,
as inputs that may be needed for discrimination between two
states could have been removed. These induced deficiencies
are much more severe than those of the first set of experi-

35



Figure 1: Results of ablating (groups of) individual nodes from an AN learner.

ments. As expected, the ability of the learner to correctly
match the target function are more severely hampered, as
illustrated in Figure 2. However, the final error reached is
still below that of an unstructured kNN learner after 1000
training examples – illustrating that, if any reliable struc-
tural information is available about a domain, there is sub-
stantial benefit to its exploitation if few training examples
are available. Of course, over time the unstructured kNN
learner would reach zero error in this synthetic domain, once
it has seen and memorized by rote each problem instance.
However, this would require a massive training set. If it is
known that some inputs are or may be pertinent, one can
always feed them directly into the root node of an AN hi-
erarchy even if intervening structure is not known. But it
is interesting to note that in some sense, a designer is bet-
ter off knowing about only a subset of the inputs relevant to
a classification problem and having some good knowledge
about an intervening abstraction structure than having full
knowledge of the relevant inputs but no knowledge of the
structure. While the latter scenario allows the designer to
produce a learner that theoretically can express the correct
hypothesis and thus would eventually reach zero error, in
practical terms for large problems it will not be possible to
gather enough training examples to get there. On the other
hand while in the former scenario zero error will never be
reached, some level of useful generalization can be made
after relatively few input examples. In the trial where we
ablated two non-sibling level 2 nodes, we have literally re-
moved half of the problem inputs and still get a better error
rate after 1000 examples have been seen!

Conclusions

We have presented a set of experiments in a synthetic do-
main that explore the impact of faulty knowledge engineer-
ing on compositional classification learners. The key finding
in these experiments is that as knowledge engineering qual-
ity degrades, there is a corresponding gradual degradation
in the benefit obtained from using the structural background
knowledge. Of course, here we have tested only two kinds
of incorrectness in knowledge engineering (missing inputs
and missing intermediate abstractions). One could imagine
many other kinds of errors, such as wiring nodes into the
wrong location in an AN. In this case, one would expect
the AN to learn to ignore information that is not pertinent
to a particular classification. This would slow learning but
should not impact final error beyond the effect of not hav-
ing the information available in the correct location. Thus,
the effect of such an error could be expected to be similar to
that of ablating the subtree beneath the miswired node. In
any case, it is not the intent of this paper to experiment with,
or even identify an exhaustive taxonomy of conceivable er-
rors in knowledge engineering. However, the experiments
described here do provide some sense of the kinds of degra-
dation in learning rate (when intermediate abstractions are
missed but all needed inputs are intact) and final error lev-
els (when needed inputs are not present) that one can expect
under two kinds of faulty knowledge engineering that seem
likely to occur in practice when designing classification hier-
archies. Since compositional classification learning still per-
forms better than flat classification even with these knowl-

36



Figure 2: Results of ablating (groups of) subtrees from an AN learner.

edge engineering errors, the takeaway finding is that struc-
tural background knowledge is well worth using in compo-
sitional classification settings even when it is prone to error.

References
Bylander, T.; Johnson, T.; and Goel, A. 1991. Structured
matching: a task-specific technique for making decisions.
Knowledge Acquisition 3:1–20.
Chandrasekaran, B. 1993. Generic tasks in knowledge-
based reasoning: high-level building blocks for expert sys-
tem design. 170–177.
Dietterich, T. 2000. An overview of MAXQ hierarchical
reinforcement learning. Lecture Notes in Computer Science
1864.
Goel, A., and Bylander, T. 1989. Computational feasibility
of structured matching. IEEE Trans. Pattern Anal. Mach.
Intell. 11(12):1312–1316.
Jones, J., and Goel, A. K. 2008. Retrospective self-
adaptation of an agents domain knowledge: Perceptually-
grounded semantics for structural credit assignment. In In
Proceedings of the AAAI-08 Workshop on Metareasoning.
Jones, J., and Goel, A. 2009. Metareasoning for adaptation
of classification knowledge. In AAMAS ’09: Proceedings
of The 8th International Conference on Autonomous Agents
and Multiagent Systems, 1145–1146. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Marthi, B.; Russell, S.; and Latham, D. 2005. Writing

Stratagus-playing agents in concurrent ALisp. In Proceed-
ings of the IJCAI Workshop on Reasoning, Representation
and Learning in Computer Games, Edinburgh, UK.
Mitchell, T. M., and Thrun, S. B. 1993. Explanation-based
neural network learning for robot control. In Giles, C. L.;
Hanson, S. J.; and Cowan, J. D., eds., Advances in Neural
Information Processing Systems 5, Proceedings of the IEEE
Conference in Denver. San Mateo, CA: Morgan Kaufmann.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. San Mateo, CA: Mor-
gan Kaufmann.
Russell, S. J. 1988. Tree-structured bias. In AAAI, 641–645.
Tadepalli, P., and Russell, S. J. 1998. Learning from ex-
amples and membership queries with structured determina-
tions. In Machine Learning, volume 32, 245–295.
Towell, G. G., and Shavlik, J. W. 1994. Knowledge-
based artificial neural networks. Artificial Intelligence 70(1-
2):119–165.
Ulam, P.; Jones, J.; and Goel, A. K. 2008. Using model-
based reflection to guide reinforcement learning. In Fourth
AAAI Conference on AI in Interactive Digital Entertainment
(AIIDE-08).
Whiteson, S.; Kohl, N.; Miikkulainen, R.; and Stone, P.
2005. Evolving keepaway soccer players through task de-
composition. Machine Learning 59(1):5–30.

37


