

Formulating Template Consistency in Inductive Logic Programming

as a Constraint Satisfaction Problem

 Roman Barták Ond ej Kuželka, Filip Železný

 Charles University, Faculty of Mathematics and Physic Czech Technical University, Faculty of Electrical Engineering
 Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic Karlovo nám. 13, 121 35 Praha 2, Czech Republic
 bartak@ktiml.mff.cuni.cz {zelezny, kuzelon2}@fel.cvut.cz

Abstract
Inductive Logic Programming (ILP) deals with the problem
of finding a hypothesis covering positive examples and
excluding negative examples, where both hypotheses and
examples are expressed in first-order logic. In this paper we
employ constraint satisfaction techniques to model and
solve a problem known as template ILP consistency, which
assumes that the structure of a hypothesis is known and the
task is to find a unification of the contained variables such
that no negative example is subsumed by the hypothesis and
all positive examples are subsumed.

Introduction
Inductive logic programming (ILP) is a subfield of
machine learning which uses first-order logic as a uniform
representation for examples, background knowledge and
hypotheses (Muggleton and De Raedt 1994). ILP provides
a powerful framework for relational data mining (Džeroski
and Lavra 2001). For the sake of complexity analysis, a
formalization of core ILP tasks was proposed by the
seminal paper (Gottlob et al 1999) still serving as a
reference framework in newer studies (e.g. Alphonse and
Osmani 2009). Gottlob defines two basic ILP problems:
the bounded consistency problem and the template
consistency problem. In both, it is assumed that examples
are clauses and the goal is to find a consistent hypothesis
H, that is, a clause entailing all positive examples and no
negative example. Entailment is checked using -
subsumption (Plotkin 1970) which is a decidable restriction
of logical entailment. In the bounded consistency
formulation, the number of literals in H is polynomially
bounded by the number of examples. In the template
consistency formulation, adopted here, it is instead
required that H = T for some substitution , where T is a
given clause called a template. Gottlob shows that both
problems are equivalent in terms of computational

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complexity and belong among 2
P complete problems. In

both cases, the complexity arises from two sources:
(1) “the subsumption test for checking whether a clause
subsumes an example”, and
(2) “the choice of the positions of variables in the atoms
(of the clause)”.

Informally, (2) corresponds to the task of searching the
space of admissible clauses, and (1) corresponds to
evaluating an explored clause.
 Previously, Maloberti and Sebag (2004) addressed the
above complexity source (1) through constraint satisfaction
techniques. In particular, they proposed a -subsumption
algorithm called Django that is based on reformulation of

-subsumption as a binary constraint satisfaction problem.
Thanks to powerful CSP heuristics, Django brought
dramatic speed-up for -subsumption and consequently for
the entire ILP system. This result clearly motivates the
exploration of using constraint satisfaction techniques also
for the above complexity source (2). We pursue this goal
here. We frame our approach in the template consistency
problem. Thus, given learning examples and template T,
the general purpose of our CSP model is to find a
substitution making T consistent with the examples. As
another contribution of this work, we show how this model
is connected with a modified Django model and how the
search for substitution is realized.
 The paper is organized as follows. We will first formally
introduce the problem addressed in this paper and give
some background on constraint satisfaction. Then, we will
describe the constraint models used to solve the problem
and show how the constraint models are integrated within a
search procedure. After that, we will propose some
extensions to improve efficiency. Finally, we will present
experimental results demonstrating the efficiency of the
proposed models.

Problem Formulation
For simplicity of notation and as usually done in ILP, we
will assume clauses to be expressed as sets of literals, and,

2

without loss of generality, we will only work with positive
literals, that is, non-negated atoms. All terms in learning
examples (hypotheses, respectively) are constants
(variables) written in lower (upper) cases. For instance, E =
{arc(a,b), arc(b,c), arc(c,a)} is an example and H =
{arc(X,Y), arc(Y,Z)} is a hypothesis.
 As usual in ILP, we use -subsumption (Plotkin 1970) to
approximate the entailment relation between clauses.
Hypothesis H subsumes example E, if there exists a
substitution of variables such that H E. In the above
example, substitution = {X/a, Y/b, Z/c} implies that H
subsumes E (there are more such substitutions, for example
{X/b, Y/c, Z/a}). The requirement that a negative example
E- is not subsumed by hypothesis H means that there does
not exist any substitution such that H E-. For
example, hypothesis G = {arc(X,Y), arc(Y,X)} does not
subsume the above example E.
 To solve the template consistency problem given a
template T, we look for a substitution making hypothesis
H = T consistent with the learning examples. Since all
terms in H are supposed to be variables, the task lies in
determining which subsets of variables in T should be
unified. For generality, we assume that all variables in T
are mutually different, that is, each variable occurs exactly
once in T, as in T = {arc(X1,X2), arc(X3,X4)}. An
exemplary hypothesis H may be obtained from this T by
applying unification X2 = X3 (and then suitably renaming
the variables). Clearly, if no unification is applied and the
template consists only of the predicates in the example
(arc/2 in our case) then the hypothesis subsumes that
example. The reason for introducing unifications is thus to
prevent H from subsuming negative examples. In our case,
hypothesis obtained by applying unifications X2 = X3 and
X1 = X4 to T does not subsume the above example E.
 In summary, the problem we are addressing in this paper
can be formulated as follows. Given a template, a set of
positive examples, and a set of negative examples, find a
unification of variables in the template that will make it
subsume all positive examples and no negative example.

Constraint Satisfaction in a Nutshell
Constraint satisfaction is a technology for solving
combinatorial (optimization) problems. A constraint
satisfaction problem (CSP) is a triple (X, D, C), where X is
a finite set of decision variables, for each xi X, Di D is
a finite set of possible values for the variable xi (the
domain), and C is a finite set of constraints (Dechter 2003).
A constraint is a relation over a subset of variables (its
scope) that restricts possible combinations of values to be
assigned to the variables. Constraints can be expressed in
extension using a set of compatible value tuples. Such
constraints are also called tabular constraints and we will
use them in the model for -subsumption. There also exist
combinatorial constraints, where the semantics of the
constraint defines the compatible value tuples. In this paper
we will use two well known constraints element and lex. In
constraint element(X,List,Y) X and Y are variables and L

is list of variables (so it is a (k+2)-ary constraint, where k is
the length of L). The semantics of element(X,List,Y) is as
follows: Y equals to the X-th element of List. Constraint
lex(M) is defined over a matrix M of variables (described
as a list of rows, where row is a list of variables) and it
ensures that rows of the matrix are lexicographically
ordered. For example lex([[X1,X2], [X3,X4], [X5,X6]]) can
be seen as abbreviation for [X1,X2] < [X3,X4] < [X5,X6].
 A solution to a CSP is a complete instantiation of
variables such that the values are taken from respective
domains and all constraints are satisfied. CSPs are usually
solved by combination of inference techniques and search.
The major inference technique is (generalized) arc
consistency which ensures that each constraint is arc
consistent. We say that a constraint is arc consistent if for
any value in the domain of any variable in the scope of the
constraint there exist values in the domains of the
remaining variables in the constraint’s scope such that the
value tuple satisfies the constraint. To make the constraint
consistent, it is enough to remove values violating the
above condition. This is done by a filtering algorithm
attached to each constraint, for example, the filtering
algorithm behind the lex constraint is described in
(Carlsson and Beldiceanu 2002).
 Arc consistency is a local inference technique meaning
that in general it does not remove all values that do not
belong to the solution. For example, if we assume
constraints X = Y and X Y and domains for X and Y are
{1, 2} then both constraints are arc consistent, but the
problem has no solution. Therefore a search algorithm is
necessary to instantiate the variables. Typically, search
interleaves with inference in the sense that after each
search decision (posting a particular constraint such as
X = 1 or X 1) the problem is made arc consistent.
 The critical part when applying constraint satisfaction
techniques is formulating the problem as a CSP – so called
constraint modeling. In this paper we focus on constraint
models for ILP, but we also show, how the models are
integrated with a search strategy and how some
deficiencies of arc consistency (see the above example) can
be removed by adding a special inference technique.

Base Constraint Model
Let us first describe the whole approach for finding the
unifications in the template. We propose a constraint
model describing how the variables are unified; let us call
it a unification model. The reason, why we are proposing a
unification model instead of simply posting an equality
constraint each time two variables should be unified in the
template is that we need to keep explicit information about
which variables are unified for further reasoning.
 To conduct a subsumption check, we use a constraint
model motivated by Django, let us call it a subsumption
model. The subsumption models for positive examples are
connected to the unification model via so called channeling
constraints. These constraints make a channel between the
models as they ensure that any decision about unification

3

of variables is immediately propagated to all subsumption
models (and vice versa) and can be discarded in case any
subsumption model detects a failure (a given positive
example is not subsumed).
 The situation with negative examples is more
complicated because negative examples cannot be
subsumed which implies that there is no solution for the
subsumption model for the negative example. This can be
modeled by using a Quantified CSP (Bordeaux and
Monfroy 2002), where nonexistence of valid instantiation
of variables can be modeled. However, a Quantified CSP is
not yet a part of mainstream constraint solvers so we
decided for a different approach. Every solution of the
subsumption model for the negative example is translated
to unification of some variables in the template which
breaks the solution (the unification of variables is in
conflict with the subsumption substitution). We will
explain later how this is realized.
 The goal of unification model is to keep and propagate
information about unification of variables in the template.
Recall that each variable appears exactly once in the
template so we can order the variables. Indices in the
following example show this ordering T = {arc(X1,X2),
arc(X3,X4), arc(X5,X6)}. Our model is based on the
observation that if a set of variables is unified then we can
select the variable with the smallest index to represent this
set and all other variables in the set are mapped to this
variable. For example, unification X2 = X3 can be
represented by mapping X3 to X2. The proposed constraint
model uses index variable Ii for each variable Xi in the
template to describe the mapping. The domain of Ii is
{1,…,i} (variable Xi can only be mapped to itself or to
some preceding variable). To express that variables Xi and
Xj are unified we simply post a constraint Ii = Ij (both
variables are mapped to an identical variable). To ensure
that each variable is mapped to the first variable in the set
of unified variables we use a constraint i=1,…,n
element(Ii, [I1,.., In], Ii), where n is the total number of
variables. In other words, if variable Xi is mapped to Xj
(Ii = j) then Xj is not mapped to any preceding variable
(Ij = j, i.e., IIi = Ii). For example, [1,1,2] is not a valid list of
indices (it represents X1 = X2 and X2 = X3), the correct
representation of this unification should be [1,1,1] (X1 = X2
and X1 = X3). The element constraints thus ensure that each
set of unifications is represented by a single list of indices.
 Notice that the same predicate symbol may appear
several times in the template. For example, arc appears
three times in above template T. We may assume that the
structure and the size of the hypothesis should be preserved
after unifying some variables (otherwise a shorter template
was generated). In particular, we should ensure that no
atom will disappear after unifying the variables. For
example, index list [1,2,1,2,5,6] satisfies the element
constraints and represents the following hypothesis
{arc(X1,X2), arc(X1,X2), arc(X5,X6)}. However, it is
actually hypothesis {arc(X1,X2), arc(X5,X6)} because the
first two atoms are identical. To remove this ambiguity we
suggest using constraint lex(M) for each predicate symbol

where matrix M consists of indices of variables in atoms of
given predicate (one row per atom), in our example M =
[[I1,I2], [I3,I4], [I5,I6]]. It means [I1,I2] < [I3,I4] < [I5,I6]
which forbids identical atoms in the hypothesis and also
introduces ordering between the atoms that prevents some
symmetrical solutions. For example {arc(X1,X2),
arc(X1,X4), arc(X5,X6)} is identical (after renaming the
variables) to {arc(X1,X2), arc(X3,X4), arc(X1,X6)}, but the
second hypothesis is not assumed thanks to lex constraint.
We are aware about other permutation symmetries that
appear in the model but are not forbidden by the lex
constraint: {arc(X1,X2), arc(X2,X4), arc(X4,X6)} is identical
(after renaming the variables) to {arc(X1,X2), arc(X3,X4),
arc(X4,X1)}, but both hypotheses are allowed in our
constraint model. These symmetries appear because we
model the set of atoms as a list of atoms. Consequently,
one hypothesis corresponds to several instantiations of the
index variables and hence, when we will be exploring
possible candidates for the hypothesis by instantiating the
index variables (deciding the unifications), we may obtain
the same hypothesis several times. This is not a desirable
behavior, but it seems that it cannot be completely avoided
in polynomial time as identifying identical hypotheses
(after renaming the variables) inherently includes the graph
isomorphism problem which is one of problems belonging
to NP neither known to be solvable in polynomial time nor
NP-complete (Garey and Johnson 1979). The following
example demonstrates the complete unification model:

template:
arc(X1,X2), arc(X3,X4), arc(X5,X6),
red(X7), red(X8), red(X9),
green(X10)

unification model:
variables I1, …, I10
domains Di = {1,…,i} i=1,…,10
constraints element(Ii, [I1,.., I10], Ii) i=1,…,10

lex([[I1,I2], [I3,I4], [I5,I6]])
lex([[I7], [I8], [I9]])

Constraint Model for Subsumption Checks
In this section we describe how to model the subsumption
check when the unification of variables is defined by the
list of index variables [I1,.., In]. To find out if hypothesis H
subsumes example E, one needs to find substitution such
that H E. As examples contain constants only, the
substitution can be seen as instantiation of variables in the
hypothesis. Taking in account that different examples may
require different substitution (instantiation of variables) we
should standardize apart the hypothesis before applying the
substitution. In particular, for each example Ej, we plug a
set Xj,1,…, Xj,n of fresh variables into H, where n is the
number of variables in the template. Then we unify these
variables according to the index list I1,…, I , which can be
done by constraints element(Ii, [Xj,1,.., Xj,n], Xj,i) for each
i=1,…,n. These are exactly the channeling constraints
between the unification and subsumption models.

4

 The rest of subsumption check is realized using the idea
proposed in (Maloberti and Sebag 2004). The main
difference of our approach is in using k-ary constraints and
standard constraint satisfaction techniques instead of
binary constraints and ad-hoc implementation. The
constraint model for each example looks as follows. First,
for each predicate symbol p with arity k we collect all k-
tuples of values from atoms of this predicate in the
example. These value tuples define in extension a k-ary
constraint cp. Now, for each atom of predicate p with
variables {Y1,…, Yk} in the hypothesis we post constraint
cp over these variables. Clearly, based on instantiation of
variables {Y1,…, Yk} we can find an atom in the example
to which a given atom from the hypothesis is mapped to.
Let {arc(a,b), arc(b,c), arc(c,a)} be all atoms of predicate
arc/2 in the example. Then binary constraint carc is defined
in extension by a set of value pairs {(a,b), (b,c), (c,a)}.
Atom arc(X,Y) from the hypothesis is represented by
constraint carc(X,Y) and instantiation X = a, Y = b means
that that this atom is mapped to arc(a,b) in the example. In
summary, any solution to a CSP defined by constraints cp
describes a substitution such that H E. The following
example demonstrates the subsumption model (without
channeling constraints, the variables are already unified).

example:
arc(a,b), arc(b,c), arc(c,a), red(a), red(c)

hypothesis:
arc(Y1,Y2), arc(Y2,Y3), red(Y2)

subsumption model:
variables Y1, Y2, Y3
domains {a,b,c}
constraints carc(Y1,Y2), carc(Y2,Y3), cred(Y2)
solutions {Y1 = c, Y2 = a, Y3 = b}

{Y1 = b, Y2 = c, Y3 = a}

Integration and Search Strategy
Before going into extensions of the base constraint model
let us describe briefly, how the unified variables are being
found. First, we generate the unification model with the
index variables. Then for each positive example, we
generate a subsumption model with fresh set of variables
and connect these variables to the index variables (see the
previous section). It remains to include the negative
examples. It is possible to use a naïve generate and test
approach, where the subsumption of negative examples is
checked after the unifications are decided. We applied a
more advanced concept where the negative examples
directly participate in the decisions about variable
unifications as follows.
 After the unification model and subsumption models for
all positive examples are generated we take the first not-yet
explored negative example (we simply take the examples
in the order specified in the input data). For this example,
we generate the subsumption model and connect it to the
index variables exactly like we did it for positive examples.
Then we instantiate the variables in this subsumption

model for the negative example only. If no solution is
found then the negative example cannot be subsumed so
we remove the constraints and variables for this example
and move to the next negative example. Assume now that
we found an instantiation of variables satisfying all the
constraints, that is, the negative example E- is subsumed by
the hypothesis H. It means that for hypothesis H containing
variables Y1,…, Yn, H E- turns out to hold. As the
negative example is required not to be subsumed by H, we
need to break substitution . This can be done by selecting
a pair of variables Yi and Yj such that Yi Yj and
forcing unification of these variables by adding a constraint
Ii = Ij and unifying corresponding variables in all
subsumption models. Frequently, there are several such
pairs so we introduce a choice point here. If the selected
pair of variables for unification is found wrong later (that
is, unifying the pair makes it impossible to subsume some
positive example), we try another pair (we take the pairs of
variables in the lexicographical order of their indices). To
prevent trying the same pair of variables repeatedly for
different substitutions subsuming negative examples, we
post a constraint Ii Ij in the alternative search branch
before we select another pair for unification. The above
process is repeated until we break all possible substitutions
for all negative examples (for each substitution such that
H E- we need to find unification that breaks it).
 In summary, the search procedure consists of three
levels. First, we select the unification constraints by using
the negative examples, then we instantiate the index
variables which fixes the unifications, and finally we check
subsumption of positive examples by instantiating
variables in the corresponding subsumption models. Note
also, that the underlying constraint solver maintains
consistency of all posted constraints which helps in
detecting some failures earlier in the search tree (it is called
a look-ahead approach). The following pseudo-code
summarizes this base solving approach.

1) Generate a unification model with index variables I
2) For each positive example p do

a. Generate a subsumption model with fresh
hypothesis variables Xp

b. Connect hypothesis variables Xp to index
variables

3) For each negative example e do
a. Generate a subsumption model with fresh

hypothesis variables Ye
b. Connect hypothesis variables Ye to index

variables
c. While exists instantiation of hypothesis

variables Ye do
i. Select variables Ye,i and Ye,j such that

Ye,i Ye,j
ii. Introduce choice point Ii = Ij or Ii Ij

d. Remove the variables Ye with corresponding
constraints

4) Instantiate index variables I
5) For each positive example p do

a. Instantiate hypothesis variables Xp

5

Enhancements
The base solving approach guarantees finding a valid
unification of variables, if it exists (otherwise it fails which
is a proof that no such unification exists). Nevertheless,
when experimenting, we identified some deficiencies that
decrease overall performance. In particular, there were two
types of deficiency – one in the search procedure and one
in the constraint model. We will now describe how we
resolved these deficiencies.
 When instantiating the index variables (step 4) we may
introduce other unifications than those necessary to break
subsumption of negative examples! Assume that for each j
(j < i) no pair of variables Yj and Yi was explored for
negative examples (step 3ci). Then the search procedure
can still instantiate index variable Ii to index j < i, which
corresponds to unifying Xj and Xi in the hypothesis. Note
that we are looking for a single solution so it is useless to
explore unifications that are not forced by the negative
examples. If the hypothesis with these additional
unifications subsumes the positive examples then also the
hypothesis without them subsumes the examples. Hence,
we should avoid exploring these additional unifications
during search in step (4). This can be done by substituting
the search procedure in step (4) by the following
procedure. We explore the set of index variables and for
each index variable Ii such that i is in the current domain of
Ii (note that domains were pruned by maintaining
consistency) we set Ii = i. This approach completely avoids
search in step (4) because all index variables will be
instantiated either via the constraint Ii = i or via
propagation of unification constraints Ii = Ij. This is easy to
prove by induction. I1 is always set to 1 (the only value in
its initial domain). Assuming the variables I1,.., Ii-1 are
instantiated then either there is no (even implied) constraint
Ij = Ii (j < i), hence i Di and constraint Ii = i is posted in
step (4) or there is a constraint Ij = Ii for some j < i and the
value of Ii is set to Ij (via propagation) which is already
instantiated. Note that if the above instantiation violates
some constraint Ii Ij posted in step (3cii) then there is no
other instantiation satisfying all the constraints. If neither Ii
nor Ij was set by the new constraint in step (4) then both Ii
and Ij unify with some Ik (k < i, k < j) and there is no
consistent instantiation of variables Ii, Ij, Ik. The other
option is that Ii is set to i by the constraint Ii = i posted in
step (4) while Ij unifies with some Ik where k < j (and vice
versa). Let us take the smallest such k. If k i then Ii Ij
holds (Ij = k). If k = i then there is no consistent
instantiation of variables Ii, Ij, Ik. Clearly, if Ii is set to i and
Ij is set to j then Ii Ij holds.
 The second group of deficiencies is hidden in constraint
propagation that does not detect some trivial infeasibilities.
We already discussed the conflict X = Y and X Y that
cannot be discovered by arc consistency if the domains are
not singleton. Because our constraint model for unification
is based mainly on these two types of constraints, this
deficiency may have significant impact on efficiency as the
conflict is discovered late (typically in step (4)). Hence we
propose a global inference procedure that can detect such

conflicts immediately. Assume that we have n index
variables. We propose using Boolean matrix U of size n n
to describe which variables are unified (1) and where the
unification is forbidden (0). Initially, the matrix consists of
unbounded variables Ui,j such that Ui,j is identical to
(unified with) Uj,i and Ui,i = 1 (bounded). When constraint
Ii = Ij is posted in step (3cii) we simply unify rows i and j
of the matrix U, that is, k Ui,k = Uj,k (and also Uk,i = Uk,j).
In particular we obtain Ui,j = Uj,i = 1. Moreover, the matrix
keeps a transitive closure of equality constraints between
the index variables (if Ui,l = 1 for some l then after the
unification Uj,l = 1 also holds and vice versa). When
constraint Ii Ij is posted in step (3cii) then we set Ui,j = 0.
If this is not possible because of Ui,j = 1 then we can
immediately deduce a failure (we have a conflict between
constraints Ii = Ij and Ii Ij). Similarly, if sometime later
we deduce that Ii = Ij either directly via posting this
constraint in step (3cii) or indirectly via transitive closure
of equality constraints then we can also deduce a failure.
The Boolean matrix for variables {X1, X2, X3, X4, X5, X6},
where we decided that X1 X2, X3 X4, X5 X6 , X2 = X3
will look like this:

1 0 0 A B C
0 1 1 0 D E
0 1 1 0 D E
A 0 0 1 F G
B D D F 1 0
C E E G 0 1

Notice that we can immediately deduce that for example
X2 X4 so if we ever try unification X2 = X4 it will
immediately fail. Or if we decide that X2 X5 (D = 0) then
we immediately get also X3 X5.
 It may seem that the above model completely overrides
the unification model (if we also include the variables from
the subsumption models in these unifications which we
actually did to strengthen propagation of channeling
constraints), but notice that the symmetry breaking lex
constraints are not covered by matrix U and there is no
propagation from the subsumption models to matrix U and
hence co-existence of the unification model and matrix U
might still be appropriate (it seems easier to express the
symmetry breaking constraints using the index variables).
 We can further exploit the unification matrix in the
following way. When building the tabular constraints for
the subsumption model, we may deduce that certain
variables cannot be unified because if they are unified then
the positive example is not subsumed. Assume the positive
example {arc(a,b), arc(b,c), arc(c,a)} which defines the
constraint with compatible pairs {(a,b), (b,c), (c,a)}. If this
binary constraint between variables X and Y is made arc
consistent then we obtain domains {a,b,c} for both
variables. Hence if constraint X = Y is posted later then no
conflict is deduced by making the problem arc consistent.
To avoid such behavior, we can initially set Ui,j = 0 when
some variables Xi and Xj are found different in any
positive example (during pre-processing).

6

Experimental Results
To validate the proposed approach, we implemented the
model in SICStus Prolog 4.0.8 and did some preliminary
experiments with problems of identifying common
structures in randomly generated structured graphs used as
benchmarks in ILP. The experiments run on 2.53 GHz
Core 2 Duo processor with 4 GB RAM under Windows 7.
As we are not aware about another direct approach for
solving the template ILP consistency problem, we present
the comparison of various models that we proposed.
 In the first experiment, we generated random structured
graphs using the Erd s-Rényi model (1959). Each dataset
consists of ten positive and ten negative examples (graphs).
The graphs contain 20 nodes with density of arcs 0.2 and
the template describes a sub-graph with 5 nodes. Table 1
shows the results, in particular, it describes the size of
template (number of atoms and variables) and runtimes in
milliseconds for base model, base model with improved
search strategy, base model with improved constraint
reasoning, and base model with both enhancements.
Clearly, the enhancement of the constraint model
contributed most to better efficiency, though the improved
search strategy alone also brought a similar gain here.

#atoms #vars base search constr search+constr

6 7 0 0 0 0
7 9 16 16 0 0
7 9 15 16 16 15
8 11 47 46 47 46
8 11 125 16 16 15
8 11 281 124 109 109
9 13 2044 1997 1684 1700
9 13 483 484 468 468
9 13 2075 141 140 140

Table 1. Comparison of runtimes (milliseconds) for identifying
common structures in graphs (Erd s-Rényi).

 To support further the observation that the proposed
model enhancements contribute significantly to efficiency
of the system, we did another experiment with random
structured graphs based on Barabási-Réka model (1999).
Again, each dataset consists of ten positive and ten
negative examples representing the graphs. The graphs
contain 20 nodes, where new nodes are attached to graph
with 3 arcs. The template consists of 10 atoms and 15
variables for each dataset (a subgraph with 5 nodes). Table
2 shows the runtimes for various models. The contribution
of enhanced constraint model is undoubted. The speedup
seems to be between one and two orders of magnitude

base search constr search+constr
69498 390 375 374

202786 107718 14087 13834
>600000 >600000 216063 213330
>600000 >600000 510777 491277

Table 2. Comparison of runtimes (milliseconds) for identifying
common structures in graphs (Barabási-Réka).

Conclusions
The paper suggests using constraint satisfaction techniques
for solving a template ILP consistency problem formulated
in (Gottlob, Leone, and Scarcello 1999). Whereas
constraint satisfaction techniques have previously been
used in ILP to enhance subsumption checking, as far as we
know, our work is the first attempt to use them to tackle
the problem of searching a consistent clause, despite the
crucial importance of this latter problem in ILP. We
propose a constraint model to describe unification of
variables in the template and we connect this model with a
constraint model for subsumption checks motivated by
Django system. In additional to using some classical
modeling techniques, such as symmetry breaking, we
propose several enhancements motivated by the nature of
the problem. The efficiency of models is demonstrated
experimentally using problems of identifying common
structures in randomly generated structured graphs.

Acknowledgements: The research is supported by the
Czech Science Foundation under the project 201/08/0509.

References
Alphonse E. and Osmani A. 2009. Empirical Study of Relational
Learning Algorithms in the Phase Transition Framework.
European Conference on Machine Learning – ECML, Springer.
Barabási, A-L. and Réka, A, 1999. Emergence of scaling in
random networks. Science, 286:509-512.
Bordeaux, L. and Monfroy, E. 2002. Beyond NP: Arc-
consistency for quanti�ed constraints. Principles and Practice of
Constraint Programming - CP 2002. LNCS 2470, pp. 371–386,
Springer Verlag.
Carlsson, M. and Beldiceanu, N. 2002. Arc-Consistency for a
Chain of Lexicographic Ordering Constraints. SICS Technical
Report T2002-18.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Džeroski, S.; Lavra N. (Eds.) 2001. Relational Data Mining.
Springer Verlag.
Erd s, P.; Rényi, A. 1959. On Random Graphs I. Publicationes
Mathematicae 6: 290–297.
Garey, M. R. and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, San Francisco.
Gottlob, G., Leone, N., and Scarcello, F. 1999. On the complexity
of some inductive logic programming problems. New Generation
Computing, 17, 53-75, Omsha.
Maloberti, J. and Sebag, M. 2004. Fast Theta-Subsumption with
Constraint Satisfaction Algorithms. Machine Learning, 55, 137–
174. Kluwer Academic Publishers.
Muggleton, S. and De Raedt, L. 1994. Inductive logic
programming: Theory and methods. Journal of Logic
Programming, 19, 629–679.
Plotkin, G., 1970. A note on inductive generalization. In B.
Meltzer, & D. Michie (Eds.), Machine Intelligence, 5, 153–163.
Edinburgh University Press.

7

