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Abstract 
Inductive Logic Programming (ILP) deals with the problem 
of finding a hypothesis covering positive examples and 
excluding negative examples, where both hypotheses and 
examples are expressed in first-order logic. In this paper we 
employ constraint satisfaction techniques to model and 
solve a problem known as template ILP consistency, which 
assumes that the structure of a hypothesis is known and the 
task is to find a unification of the contained variables such 
that no negative example is subsumed by the hypothesis and 
all positive examples are subsumed. 

Introduction   
Inductive logic programming (ILP) is a subfield of 
machine learning which uses first-order logic as a uniform 
representation for examples, background knowledge and 
hypotheses (Muggleton and De Raedt 1994). ILP provides 
a powerful framework for relational data mining (Džeroski 
and Lavra  2001). For the sake of complexity analysis, a 
formalization of core ILP tasks was proposed by the 
seminal paper (Gottlob et al 1999) still serving as a 
reference framework in newer studies (e.g. Alphonse and 
Osmani 2009). Gottlob defines two basic ILP problems: 
the bounded consistency problem and the template 
consistency problem. In both, it is assumed that examples 
are clauses and the goal is to find a consistent hypothesis 
H, that is, a clause entailing all positive examples and no 
negative example. Entailment is checked using -
subsumption (Plotkin 1970) which is a decidable restriction 
of logical entailment. In the bounded consistency 
formulation, the number of literals in H is polynomially 
bounded by the number of examples. In the template 
consistency formulation, adopted here, it is instead 
required that H = T for some substitution , where T is a 
given clause called a template. Gottlob shows that both 
problems are equivalent in terms of computational 
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complexity and belong among 2
P complete problems. In 

both cases, the complexity arises from two sources: 
(1) “the subsumption test for checking whether a clause 
subsumes an example”, and 
(2) “the choice of the positions of variables in the atoms 
(of the clause)”. 

Informally, (2) corresponds to the task of searching the 
space of admissible clauses, and (1) corresponds to 
evaluating an explored clause. 
 Previously, Maloberti and Sebag (2004) addressed the 
above complexity source (1) through constraint satisfaction 
techniques. In particular, they proposed a -subsumption 
algorithm called Django that is based on reformulation of 

-subsumption as a binary constraint satisfaction problem. 
Thanks to powerful CSP heuristics, Django brought 
dramatic speed-up for -subsumption and consequently for 
the entire ILP system. This result clearly motivates the 
exploration of using constraint satisfaction techniques also 
for the above complexity source (2). We pursue this goal 
here. We frame our approach in the template consistency 
problem. Thus, given learning examples and template T, 
the general purpose of our CSP model is to find a 
substitution making T  consistent with the examples.  As 
another contribution of this work, we show how this model 
is connected with a modified Django model and how the 
search for substitution  is realized. 
 The paper is organized as follows. We will first formally 
introduce the problem addressed in this paper and give 
some background on constraint satisfaction. Then, we will 
describe the constraint models used to solve the problem 
and show how the constraint models are integrated within a 
search procedure. After that, we will propose some 
extensions to improve efficiency. Finally, we will present 
experimental results demonstrating the efficiency of the 
proposed models. 

Problem Formulation 
For simplicity of notation and as usually done in ILP, we 
will assume clauses to be expressed as sets of literals, and, 
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without loss of generality, we will only work with positive 
literals, that is, non-negated atoms. All terms in learning 
examples (hypotheses, respectively) are constants 
(variables) written in lower (upper) cases. For instance, E = 
{arc(a,b), arc(b,c), arc(c,a)} is an example and H = 
{arc(X,Y), arc(Y,Z)} is a hypothesis. 
 As usual in ILP, we use -subsumption (Plotkin 1970) to 
approximate the entailment relation between clauses. 
Hypothesis H subsumes example E, if there exists a 
substitution  of variables such that H   E. In the above 
example, substitution  = {X/a, Y/b, Z/c} implies that H 
subsumes E (there are more such substitutions, for example 
{X/b, Y/c, Z/a}). The requirement that a negative example 
E- is not subsumed by hypothesis H means that there does 
not exist any substitution  such that H   E-. For 
example, hypothesis G = {arc(X,Y), arc(Y,X)} does not 
subsume the above example E. 
 To solve the template consistency problem given a 
template T, we look for a substitution  making hypothesis 
H = T  consistent with the learning examples. Since all 
terms in H are supposed to be variables, the task lies in 
determining which subsets of variables in T should be 
unified. For generality, we assume that all variables in T 
are mutually different, that is, each variable occurs exactly 
once in T, as in T = {arc(X1,X2), arc(X3,X4)}. An 
exemplary hypothesis H may be obtained from this T by 
applying unification X2 = X3 (and then suitably renaming 
the variables). Clearly, if no unification is applied and the 
template consists only of the predicates in the example 
(arc/2 in our case) then the hypothesis subsumes that 
example. The reason for introducing unifications is thus to 
prevent H from subsuming negative examples. In our case, 
hypothesis obtained by applying unifications X2 = X3 and 
X1 = X4 to T does not subsume the above example E. 
 In summary, the problem we are addressing in this paper 
can be formulated as follows. Given a template, a set of 
positive examples, and a set of negative examples, find a 
unification of variables in the template that will make it 
subsume all positive examples and no negative example. 

Constraint Satisfaction in a Nutshell 
Constraint satisfaction is a technology for solving 
combinatorial (optimization) problems. A constraint 
satisfaction problem (CSP) is a triple (X, D, C), where X is 
a finite set of decision variables, for each xi  X, Di  D is 
a finite set of possible values for the variable xi (the 
domain), and C is a finite set of constraints (Dechter 2003). 
A constraint is a relation over a subset of variables (its 
scope) that restricts possible combinations of values to be 
assigned to the variables. Constraints can be expressed in 
extension using a set of compatible value tuples. Such 
constraints are also called tabular constraints and we will 
use them in the model for -subsumption. There also exist 
combinatorial constraints, where the semantics of the 
constraint defines the compatible value tuples. In this paper 
we will use two well known constraints element and lex. In 
constraint element(X,List,Y) X and Y are variables and L 

is list of variables (so it is a (k+2)-ary constraint, where k is 
the length of L). The semantics of element(X,List,Y) is as 
follows: Y equals to the X-th element of List. Constraint 
lex(M) is defined over a matrix M of variables (described 
as a list of rows, where row is a list of variables) and it 
ensures that rows of the matrix are lexicographically 
ordered. For example lex([[X1,X2], [X3,X4], [X5,X6]]) can 
be seen as abbreviation for [X1,X2] < [X3,X4] < [X5,X6]. 
 A solution to a CSP is a complete instantiation of 
variables such that the values are taken from respective 
domains and all constraints are satisfied. CSPs are usually 
solved by combination of inference techniques and search. 
The major inference technique is (generalized) arc 
consistency which ensures that each constraint is arc 
consistent. We say that a constraint is arc consistent if for 
any value in the domain of any variable in the scope of the 
constraint there exist values in the domains of the 
remaining variables in the constraint’s scope such that the 
value tuple satisfies the constraint. To make the constraint 
consistent, it is enough to remove values violating the 
above condition. This is done by a filtering algorithm 
attached to each constraint, for example, the filtering 
algorithm behind the lex constraint is described in 
(Carlsson and Beldiceanu 2002). 
 Arc consistency is a local inference technique meaning 
that in general it does not remove all values that do not 
belong to the solution. For example, if we assume 
constraints X = Y and X  Y and domains for X and Y are 
{1, 2} then both constraints are arc consistent, but the 
problem has no solution. Therefore a search algorithm is 
necessary to instantiate the variables. Typically, search 
interleaves with inference in the sense that after each 
search decision (posting a particular constraint such as 
X = 1 or X  1) the problem is made arc consistent. 
 The critical part when applying constraint satisfaction 
techniques is formulating the problem as a CSP – so called 
constraint modeling. In this paper we focus on constraint 
models for ILP, but we also show, how the models are 
integrated with a search strategy and how some 
deficiencies of arc consistency (see the above example) can 
be removed by adding a special inference technique. 

Base Constraint Model 
Let us first describe the whole approach for finding the 
unifications in the template. We propose a constraint 
model describing how the variables are unified; let us call 
it a unification model. The reason, why we are proposing a 
unification model instead of simply posting an equality 
constraint each time two variables should be unified in the 
template is that we need to keep explicit information about 
which variables are unified for further reasoning. 
 To conduct a subsumption check, we use a constraint 
model motivated by Django, let us call it a subsumption 
model. The subsumption models for positive examples are 
connected to the unification model via so called channeling 
constraints. These constraints make a channel between the 
models as they ensure that any decision about unification 
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of variables is immediately propagated to all subsumption 
models (and vice versa) and can be discarded in case any 
subsumption model detects a failure (a given positive 
example is not subsumed). 
 The situation with negative examples is more 
complicated because negative examples cannot be 
subsumed which implies that there is no solution for the 
subsumption model for the negative example. This can be 
modeled by using a Quantified CSP (Bordeaux and 
Monfroy 2002), where nonexistence of valid instantiation 
of variables can be modeled. However, a Quantified CSP is 
not yet a part of mainstream constraint solvers so we 
decided for a different approach. Every solution of the 
subsumption model for the negative example is translated 
to unification of some variables in the template which 
breaks the solution (the unification of variables is in 
conflict with the subsumption substitution). We will 
explain later how this is realized. 
 The goal of unification model is to keep and propagate 
information about unification of variables in the template. 
Recall that each variable appears exactly once in the 
template so we can order the variables. Indices in the 
following example show this ordering T = {arc(X1,X2), 
arc(X3,X4), arc(X5,X6)}. Our model is based on the 
observation that if a set of variables is unified then we can 
select the variable with the smallest index to represent this 
set and all other variables in the set are mapped to this 
variable. For example, unification X2 = X3 can be 
represented by mapping X3 to X2. The proposed constraint 
model uses index variable Ii for each variable Xi in the 
template to describe the mapping. The domain of Ii is 
{1,…,i} (variable Xi can only be mapped to itself or to 
some preceding variable). To express that variables Xi and 
Xj are unified we simply post a constraint Ii = Ij (both 
variables are mapped to an identical variable). To ensure 
that each variable is mapped to the first variable in the set 
of unified variables we use a constraint i=1,…,n 
element(Ii, [I1,.., In], Ii), where n is the total number of 
variables. In other words, if variable Xi is mapped to Xj 
(Ii = j) then Xj is not mapped to any preceding variable 
(Ij = j, i.e., IIi = Ii). For example, [1,1,2] is not a valid list of 
indices (it represents X1 = X2 and X2 = X3), the correct 
representation of this unification should be [1,1,1] (X1 = X2 
and X1 = X3). The element constraints thus ensure that each 
set of unifications is represented by a single list of indices. 
 Notice that the same predicate symbol may appear 
several times in the template. For example, arc appears 
three times in above template T. We may assume that the 
structure and the size of the hypothesis should be preserved 
after unifying some variables (otherwise a shorter template 
was generated). In particular, we should ensure that no 
atom will disappear after unifying the variables. For 
example, index list [1,2,1,2,5,6] satisfies the element 
constraints and represents the following hypothesis 
{arc(X1,X2), arc(X1,X2), arc(X5,X6)}. However, it is 
actually hypothesis {arc(X1,X2), arc(X5,X6)} because the 
first two atoms are identical. To remove this ambiguity we 
suggest using constraint lex(M) for each predicate symbol 

where matrix M consists of indices of variables in atoms of 
given predicate (one row per atom), in our example M = 
[[I1,I2], [I3,I4], [I5,I6]]. It means [I1,I2] < [I3,I4] < [I5,I6] 
which forbids identical atoms in the hypothesis and also 
introduces ordering between the atoms that prevents some 
symmetrical solutions. For example {arc(X1,X2), 
arc(X1,X4), arc(X5,X6)} is identical (after renaming the 
variables)  to {arc(X1,X2), arc(X3,X4), arc(X1,X6)}, but the 
second hypothesis is not assumed thanks to lex constraint. 
We are aware about other permutation symmetries that 
appear in the model but are not forbidden by the lex 
constraint: {arc(X1,X2), arc(X2,X4), arc(X4,X6)} is identical 
(after renaming the variables) to {arc(X1,X2), arc(X3,X4), 
arc(X4,X1)}, but both hypotheses are allowed in our 
constraint model. These symmetries appear because we 
model the set of atoms as a list of atoms. Consequently, 
one hypothesis corresponds to several instantiations of the 
index variables and hence, when we will be exploring 
possible candidates for the hypothesis by instantiating the 
index variables (deciding the unifications), we may obtain 
the same hypothesis several times. This is not a desirable 
behavior, but it seems that it cannot be completely avoided 
in polynomial time as identifying identical hypotheses 
(after renaming the variables) inherently includes the graph 
isomorphism problem which is one of problems belonging 
to NP neither known to be solvable in polynomial time nor 
NP-complete (Garey and Johnson 1979).  The following 
example demonstrates the complete unification model: 

template:
arc(X1,X2), arc(X3,X4), arc(X5,X6),
red(X7), red(X8), red(X9), 
green(X10)

unification model:
variables I1, …, I10 
domains Di = {1,…,i} i=1,…,10
constraints element(Ii, [I1,.., I10], Ii) i=1,…,10

lex([[I1,I2], [I3,I4], [I5,I6]]) 
lex([[I7], [I8], [I9]]) 

Constraint Model for Subsumption Checks 
In this section we describe how to model the subsumption 
check when the unification of variables is defined by the 
list of index variables [I1,.., In]. To find out if hypothesis H 
subsumes example E, one needs to find substitution  such 
that H   E. As examples contain constants only, the 
substitution can be seen as instantiation of variables in the 
hypothesis. Taking in account that different examples may 
require different substitution (instantiation of variables) we 
should standardize apart the hypothesis before applying the 
substitution. In particular, for each example Ej, we plug a 
set Xj,1,…, Xj,n of fresh variables into H, where n is the 
number of variables in the template. Then we unify these 
variables according to the index list I1,…, I , which can be 
done by constraints element(Ii, [Xj,1,.., Xj,n], Xj,i) for each 
i=1,…,n. These are exactly the channeling constraints 
between the unification and subsumption models. 
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 The rest of subsumption check is realized using the idea 
proposed in (Maloberti and Sebag 2004). The main 
difference of our approach is in using k-ary constraints and 
standard constraint satisfaction techniques instead of 
binary constraints and ad-hoc implementation. The 
constraint model for each example looks as follows. First, 
for each predicate symbol p with arity k we collect all k-
tuples of values from atoms of this predicate in the 
example. These value tuples define in extension a k-ary 
constraint cp. Now, for each atom of predicate p with 
variables {Y1,…, Yk} in the hypothesis we post constraint 
cp over these variables. Clearly, based on instantiation of 
variables {Y1,…, Yk} we can find an atom in the example 
to which a given atom from the hypothesis is mapped to. 
Let {arc(a,b), arc(b,c), arc(c,a)} be all atoms of predicate 
arc/2 in the example. Then binary constraint carc is defined 
in extension by a set of value pairs {(a,b), (b,c), (c,a)}. 
Atom arc(X,Y) from the hypothesis is represented by 
constraint carc(X,Y) and instantiation X = a, Y = b means 
that that this atom is mapped to arc(a,b) in the example. In 
summary, any solution to a CSP defined by constraints cp 
describes a substitution  such that H   E. The following 
example demonstrates the subsumption model (without 
channeling constraints, the variables are already unified). 

example: 
arc(a,b), arc(b,c), arc(c,a), red(a), red(c)

hypothesis: 
arc(Y1,Y2), arc(Y2,Y3), red(Y2) 

subsumption model: 
variables Y1, Y2, Y3 
domains {a,b,c} 
constraints carc(Y1,Y2), carc(Y2,Y3), cred(Y2)
solutions {Y1 = c, Y2 = a, Y3 = b} 

{Y1 = b, Y2 = c, Y3 = a} 

Integration and Search Strategy 
Before going into extensions of the base constraint model 
let us describe briefly, how the unified variables are being 
found. First, we generate the unification model with the 
index variables. Then for each positive example, we 
generate a subsumption model with fresh set of variables 
and connect these variables to the index variables (see the 
previous section). It remains to include the negative 
examples. It is possible to use a naïve generate and test 
approach, where the subsumption of negative examples is 
checked after the unifications are decided. We applied a 
more advanced concept where the negative examples 
directly participate in the decisions about variable 
unifications as follows. 
 After the unification model and subsumption models for 
all positive examples are generated we take the first not-yet 
explored negative example (we simply take the examples 
in the order specified in the input data). For this example, 
we generate the subsumption model and connect it to the 
index variables exactly like we did it for positive examples. 
Then we instantiate the variables in this subsumption 

model for the negative example only. If no solution is 
found then the negative example cannot be subsumed so 
we remove the constraints and variables for this example 
and move to the next negative example. Assume now that 
we found an instantiation of variables satisfying all the 
constraints, that is, the negative example E- is subsumed by 
the hypothesis H. It means that for hypothesis H containing 
variables Y1,…, Yn, H   E- turns out to hold. As the 
negative example is required not to be subsumed by H, we 
need to break substitution . This can be done by selecting 
a pair of variables Yi and Yj such that Yi   Yj  and 
forcing unification of these variables by adding a constraint 
Ii = Ij and unifying corresponding variables in all 
subsumption models. Frequently, there are several such 
pairs so we introduce a choice point here. If the selected 
pair of variables for unification is found wrong later (that 
is, unifying the pair makes it impossible to subsume some 
positive example), we try another pair (we take the pairs of 
variables in the lexicographical order of their indices). To 
prevent trying the same pair of variables repeatedly for 
different substitutions subsuming negative examples, we 
post a constraint Ii  Ij in the alternative search branch 
before we select another pair for unification. The above 
process is repeated until we break all possible substitutions 
for all negative examples (for each substitution such that 
H   E- we need to find unification that breaks it). 
 In summary, the search procedure consists of three 
levels. First, we select the unification constraints by using 
the negative examples, then we instantiate the index 
variables which fixes the unifications, and finally we check 
subsumption of positive examples by instantiating 
variables in the corresponding subsumption models. Note 
also, that the underlying constraint solver maintains 
consistency of all posted constraints which helps in 
detecting some failures earlier in the search tree (it is called 
a look-ahead approach). The following pseudo-code 
summarizes this base solving approach. 

1) Generate a unification model with index variables I 
2) For each positive example p do 

a. Generate a subsumption model with fresh 
hypothesis variables Xp 

b. Connect hypothesis variables Xp to index 
variables 

3) For each negative example e do 
a. Generate a subsumption model with fresh 

hypothesis variables Ye 
b. Connect hypothesis variables Ye to index 

variables 
c. While exists instantiation  of hypothesis 

variables Ye do 
i. Select variables Ye,i and Ye,j such that 

Ye,i   Ye,j  
ii. Introduce choice point Ii = Ij or Ii  Ij 

d. Remove the variables Ye with corresponding 
constraints 

4) Instantiate index variables I 
5) For each positive example p do  

a. Instantiate hypothesis variables Xp 
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Enhancements 
The base solving approach guarantees finding a valid 
unification of variables, if it exists (otherwise it fails which 
is a proof that no such unification exists). Nevertheless, 
when experimenting, we identified some deficiencies that 
decrease overall performance. In particular, there were two 
types of deficiency – one in the search procedure and one 
in the constraint model. We will now describe how we 
resolved these deficiencies. 
 When instantiating the index variables (step 4) we may 
introduce other unifications than those necessary to break 
subsumption of negative examples! Assume that for each j 
(j < i) no pair of variables Yj and Yi was explored for 
negative examples (step 3ci). Then the search procedure 
can still instantiate index variable Ii to index j < i, which 
corresponds to unifying Xj and Xi in the hypothesis. Note 
that we are looking for a single solution so it is useless to 
explore unifications that are not forced by the negative 
examples. If the hypothesis with these additional 
unifications subsumes the positive examples then also the 
hypothesis without them subsumes the examples. Hence, 
we should avoid exploring these additional unifications 
during search in step (4). This can be done by substituting 
the search procedure in step (4) by the following 
procedure. We explore the set of index variables and for 
each index variable Ii such that i is in the current domain of 
Ii (note that domains were pruned by maintaining 
consistency) we set Ii = i. This approach completely avoids 
search in step (4) because all index variables will be 
instantiated either via the constraint Ii = i or via 
propagation of unification constraints Ii = Ij. This is easy to 
prove by induction. I1 is always set to 1 (the only value in 
its initial domain). Assuming the variables I1,.., Ii-1 are 
instantiated then either there is no (even implied) constraint 
Ij = Ii ( j < i), hence i  Di and constraint Ii = i is posted in 
step (4) or there is a constraint Ij = Ii for some j < i and the 
value of Ii is set to Ij (via propagation) which is already 
instantiated. Note that if the above instantiation violates 
some constraint Ii  Ij posted in step (3cii) then there is no 
other instantiation satisfying all the constraints. If neither Ii 
nor Ij was set by the new constraint in step (4) then both Ii 
and Ij unify with some Ik (k < i, k < j) and there is no 
consistent instantiation of variables Ii, Ij, Ik. The other 
option is that Ii is set to i by the constraint Ii = i posted in 
step (4) while Ij unifies with some Ik where k < j (and vice 
versa). Let us take the smallest such k.  If k  i then Ii  Ij 
holds (Ij = k). If k = i then there is no consistent 
instantiation of variables Ii, Ij, Ik. Clearly, if Ii is set to i and 
Ij is set to j then Ii  Ij holds. 
 The second group of deficiencies is hidden in constraint 
propagation that does not detect some trivial infeasibilities. 
We already discussed the conflict X = Y and X  Y that 
cannot be discovered by arc consistency if the domains are 
not singleton. Because our constraint model for unification 
is based mainly on these two types of constraints, this 
deficiency may have significant impact on efficiency as the 
conflict is discovered late (typically in step (4)). Hence we 
propose a global inference procedure that can detect such 

conflicts immediately. Assume that we have n index 
variables. We propose using Boolean matrix U of size n n 
to describe which variables are unified (1) and where the 
unification is forbidden (0). Initially, the matrix consists of 
unbounded variables Ui,j such that Ui,j  is identical to 
(unified with) Uj,i and Ui,i = 1 (bounded). When constraint 
Ii = Ij is posted in step (3cii) we simply unify rows i and j 
of the matrix U, that is, k Ui,k = Uj,k (and also Uk,i = Uk,j). 
In particular we obtain Ui,j = Uj,i = 1. Moreover, the matrix 
keeps a transitive closure of equality constraints between 
the index variables (if Ui,l = 1 for some l then after the 
unification Uj,l = 1 also holds and vice versa). When 
constraint Ii  Ij is posted in step (3cii) then we set Ui,j = 0. 
If this is not possible because of Ui,j = 1 then we can 
immediately deduce a failure (we have a conflict between 
constraints Ii = Ij and Ii  Ij). Similarly, if sometime later 
we deduce that Ii = Ij either directly via posting this 
constraint in step (3cii) or indirectly via transitive closure 
of equality constraints then we can also deduce a failure. 
The Boolean matrix for variables {X1, X2, X3, X4, X5, X6}, 
where we decided that X1  X2, X3  X4, X5  X6 , X2 = X3 
will look like this: 

1 0 0 A B C
0 1 1 0 D E
0 1 1 0 D E
A 0 0 1 F G
B D D F 1 0
C E E G 0 1

Notice that we can immediately deduce that for example 
X2  X4 so if we ever try unification X2 = X4 it will 
immediately fail. Or if we decide that X2  X5 (D = 0) then 
we immediately get also X3  X5. 
 It may seem that the above model completely overrides 
the unification model (if we also include the variables from 
the subsumption models in these unifications which we 
actually did to strengthen propagation of channeling 
constraints), but notice that the symmetry breaking lex 
constraints are not covered by matrix U and there is no 
propagation from the subsumption models to matrix U and 
hence co-existence of the unification model and matrix U 
might still be appropriate (it seems easier to express the 
symmetry breaking constraints using the index variables). 
 We can further exploit the unification matrix in the 
following way. When building the tabular constraints for 
the subsumption model, we may deduce that certain 
variables cannot be unified because if they are unified then 
the positive example is not subsumed. Assume the positive 
example {arc(a,b), arc(b,c), arc(c,a)} which defines the 
constraint with compatible pairs {(a,b), (b,c), (c,a)}. If this 
binary constraint between variables X and Y is made arc 
consistent then we obtain domains {a,b,c} for both 
variables. Hence if constraint X = Y is posted later then no 
conflict is deduced by making the problem arc consistent. 
To avoid such behavior, we can initially set Ui,j = 0 when 
some variables Xi and Xj are found different in any 
positive example (during pre-processing). 
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Experimental Results 
To validate the proposed approach, we implemented the 
model in SICStus Prolog 4.0.8 and did some preliminary 
experiments with problems of identifying common 
structures in randomly generated structured graphs used as 
benchmarks in ILP. The experiments run on 2.53 GHz 
Core 2 Duo processor with 4 GB RAM under Windows 7. 
As we are not aware about another direct approach for 
solving the template ILP consistency problem, we present 
the comparison of various models that we proposed. 
 In the first experiment, we generated random structured 
graphs using the Erd s-Rényi model (1959). Each dataset 
consists of ten positive and ten negative examples (graphs). 
The graphs contain 20 nodes with density of arcs 0.2 and 
the template describes a sub-graph with 5 nodes. Table 1 
shows the results, in particular, it describes the size of 
template (number of atoms and variables) and runtimes in 
milliseconds for base model, base model with improved 
search strategy, base model with improved constraint 
reasoning, and base model with both enhancements. 
Clearly, the enhancement of the constraint model 
contributed most to better efficiency, though the improved 
search strategy alone also brought a similar gain here. 
 
#atoms #vars base search constr search+constr

6 7 0 0 0 0
7 9 16 16 0 0
7 9 15 16 16 15
8 11 47 46 47 46
8 11 125 16 16 15
8 11 281 124 109 109
9 13 2044 1997 1684 1700
9 13 483 484 468 468
9 13 2075 141 140 140

Table 1. Comparison of runtimes (milliseconds) for identifying 
common structures in graphs (Erd s-Rényi). 
 
 To support further the observation that the proposed 
model enhancements contribute significantly to efficiency 
of the system, we did another experiment with random 
structured graphs based on Barabási-Réka model (1999). 
Again, each dataset consists of ten positive and ten 
negative examples representing the graphs. The graphs 
contain 20 nodes, where new nodes are attached to graph 
with 3 arcs. The template consists of 10 atoms and 15 
variables for each dataset (a subgraph with 5 nodes). Table 
2 shows the runtimes for various models. The contribution 
of enhanced constraint model is undoubted. The speedup 
seems to be between one and two orders of magnitude 
 

base search constr search+constr
69498 390 375 374

202786 107718 14087 13834
>600000 >600000 216063 213330
>600000 >600000 510777 491277

Table 2. Comparison of runtimes (milliseconds) for identifying 
common structures in graphs (Barabási-Réka).  

Conclusions 
The paper suggests using constraint satisfaction techniques 
for solving a template ILP consistency problem formulated 
in (Gottlob, Leone, and Scarcello 1999). Whereas 
constraint satisfaction techniques have previously been 
used in ILP to enhance subsumption checking, as far as we 
know, our work is the first attempt to use them to tackle 
the problem of searching a consistent clause, despite the 
crucial importance of this latter problem in ILP. We 
propose a constraint model to describe unification of 
variables in the template and we connect this model with a 
constraint model for subsumption checks motivated by 
Django system. In additional to using some classical 
modeling techniques, such as symmetry breaking, we 
propose several enhancements motivated by the nature of 
the problem. The efficiency of models is demonstrated 
experimentally using problems of identifying common 
structures in randomly generated structured graphs. 
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