
Abstracting Markov Networks

L. Saitta C. Vrain
Università del Piemonte Orientale Université d’Orléans

Viale Teresa Michel 11 LIFO - BP 6759
15121 Alessandria, Italy 45067 Orléans, France

Abstract

In this paper we describe a preliminary investigation on
the use of abstraction operators to reduce the complex-
ity of inference in Markov Networks. More specifically,
we are interested in Logic Markov Network, where the
use of abstraction may be a complementary approach to
lifted inference.

1 Introduction
Markov networks have proved to be a very useful tool to
represent probability distributions over large domains (see
for instance, Chapter 8 in (Bishop 2006)). A Markov Net-
work is an undirected graphical model, where variables are
represented by nodes and features on subsets of variables
by cliques in the graph. The main characteristics of such a
model can be described as follows:

• The joint probability distribution over the variables is de-
fined as the normalized product of potential functions over
the maximal cliques of the graph.

• Conditional independence: X is independent of Y given
Z, written X

∐
Y |Z, when all possible paths between

nodes of X and nodes of Y pass through at least one node
of Z.

One of the major issue in graphical model is the computa-
tional complexity of reasoning, which can be decomposed
into several inference problems, such as, for instance, find-
ing the marginal distribution of a variable X , or comput-
ing the probability of a query q given evidence e (P (q|e)).
Let us consider, for instance, the first problem. To compute
P (X), a straightforward but naive approach consists in sum-
ming the joint distribution over all variables except X: with
N Boolean variables, this leads to a sum on 2N−1 terms.
A complexity of the order O(2N) is also required to com-
pute the normalization factor of the probability distribution,
namely the partition function Z.

Techniques have been developed to reduce the complex-
ity of inference, either relying on the structure of the graph
to compute exact inference, or using sampling techniques
for computing approximate inference. For instance, (Bishop
2006) presents the sum-product algorithm (Kschischang,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Frey, and Loeliger 2001) for undirected tree: it relies on the
notion of factor graph that completes the graph with addi-
tional nodes, one for each maximal clique, and that allows,
in some sense, to exchange the sum and the product in the
expression of the marginal P (X). Approximate inference
usually relies on Markov Chain Monte Carlo sampling tech-
niques, as for instance Gibbs sampling.

Nowawdays, the problem of inference complexity is all
the more acute with the emergence of Statistical Relational
Learning, which aims at combining probabilistic graphi-
cal models with first order logics representations. The
work that we present in this paper has been motivated by
Markov Logic Networks (MLN), introduced in (Richardson
and Domingos 2006). A Markov Logic Network is defined
by a set of weighted first-order formulas. A Markov net-
work is built by associating a node to each ground atom1

and two ground atoms are linked in the graph if they occur
in the same instantiated formula. The complexity, in terms
of the number of nodes in the graph, depends on the number
of constants, the number of predicates and their arity. For
instance, if we suppose that the domain is composed of n
constants, and we have m binary predicates, then the num-
ber of ground atoms, and therefore the number of nodes in
the graph, is m × n2.

To reduce the problem of inference complexity, mainly
two families of approaches have been proposed. The first
one considers the ground Makov network and uses ei-
ther inference algorithms based on SAT algorithm (Poon
and Domingos 2006) or Gibbs sampling (Richardson and
Domingos 2006; Milch and Russell 2006). To overcome
the complexity problem due to the size of the ground net-
works, methods have been developed to ground atoms and
formulas only when needed (Singla and Domingos 2006;
Riedel 2008; Poon, Domingos, and Sumner 2008).

The aim of the second approach is to avoid building the
ground Markov networks. For instance first-order proba-
bilistic inference extends the variable elimination algorithm
to first-order logic (Poole 2003); first-order lifted inference
extends Poole’s work by introducing a counting elimination
method (de Salvo Braz, Amir, and Roth 2005). In (Singla

1With function-free language, a ground atom is an expression
p(a1, . . . , an), where n is the arity of the predicate p and a1, . . . ,
an are constants.

61

and Domingos 2008), the authors propose to build lifted net-
works: supernodes and superfeatures are introduced allow-
ing to respectively group the ground atoms and the ground-
ings of the formulas with the same behavior.

In this paper, we describe a preliminary investigation of a
third line of attack, namely the use of abstraction for reduc-
ing the complexity of inference in Markov networks. Ab-
straction, in this context, aims at transforming the original
network into a smaller/simpler one, which can be handled
with a reduced complexity, still preserving some required
properties. Graph abstraction for specific tasks have been
proposed early in the literature. For instance, Holte et al.
(Holte et al. 1996) have described a STAR abstraction op-
erator that allows significant speed up in problem solving.
Clustering of nodes in a graph, detection of ”communities”,
and building up hierarchies and multi-scale views can all be
considered as forms of abstraction (Epstein and Li 2009;
Zhang, Ning, and Zhang 2007; Clauset, Moore, and New-
man 2008; Arenas, Fernández, and Gómez 2008; Saitta,
Henegar, and Zucker 2009; Harry and Lindquist 2004;
Bulitko et al. 2007).

In this paper we concentrate on preserving properties
related to the probabilistic inferences that are required in
Markov networks, taking into account their specific charac-
teristics.

2 Markov Networks with Boolean Variables
Given a vector �X = (X1, X2, ...XN) of stochastic Boolean
variables, which assumes values �x = (x1, x2, ..., xN) ∈
X = {0, 1}N , a Markov network G represents the joint
probability distribution over �X. The network has N nodes
and M cliques. An assignment of values to �x is a world.
The set of all worlds, X , contains 2N elements.

The probability over �X can be expressed as a product of
M potential functions, each one associated to a clique of G:

P (�X = �x) =def P (�x) =
1
Z

M∏
k=1

ϕk(�x) (1)

In (1) Z is the partition function, which is a normalization
factor defined by:

Z =
∑
�x∈X

M∏
k=1

ϕk(�x) (2)

In order to estimate the computational complexity of evalu-
ating Z, let us assume, as a unit, the complexity required to
compute one potential function. Then:

C(N, M) = M · 2N (3)

3 Partitioning a Markov Network
Given a Markov network G, let us partition the cliques of G
into two sets, corresponding to subgraphs G1 and G2, where
G1 contains h cliques, and G2 contains (M−h) cliques. The
nodes in G1 and G2 can be partitioned into three sets, namely,
�U, containing the nodes occurring only in G1, �V, containing
the nodes occurring only in G2, and �T, containing the nodes

shared by G1 and G2. The values taken on by �U, grouping
r variables, �T, grouping s variables, and �V, grouping (N −
r − s) variables, are contained in three subvectors of �x, i.e.,
�u ∈ Xu, �t ∈ Xt, and �v ∈ Xv , respectively. We have:

|Xu| = 2r |Xt| = 2s |Xv| = 2N−r−s

Without loss of generality we may assume that �u contains
the first r variables (X1, ..., Xr) , �t contains the subsequent
s variables (Xr+1, ..., Xr+s), and �v contains the last (N −
r − s) variables (Xr+s+1, ..., XN):

�u = (x1, x2, ..., xr)
�t = (xr+1, ..., xr+s)
�v = (xr+s+1, ..., xN)

Let us now compute the probability of a generic world �x, by
taking into account the partition of G into G1 and G2:

P (�x) =
1
Z

h∏
k=1

ϕk(�u,�t)
M∏

k=h+1

ϕk(�v,�t) (4)

From (4) we want to compute the partition function Z:

Z =
∑
�x∈X

(
h∏

k=1

ϕk(�u,�t)
M∏

k=h+1

ϕk(�v,�t)

)
(5)

We can split the sum in (5) as follows:

Z =
∑

�t∈Xt

⎡
⎣ ∑

�u∈Xu

h∏
k=1

ϕk(�u,�t)
∑

�v∈Xv

M∏
k=h+1

ϕk(�v,�t)

⎤
⎦ (6)

In expression (6) the two internal sums are independent, for
each value of�t. In order to compute Z from (6) we obtain a
complexity (in the number of evaluations of potential func-
tions):

C(N, M, r, s, h) = O (
2r+sh + 2N−r(M − h)]

)
In equation (6), let us define:

Φ1(�u,�t) =
h∏

k=1

ϕk(�u,�t) and Φ2(�v,�t) =
M∏

k=h+1

ϕk(�v,�t) (7)

Moreover:

Ψ1(�t) =
∑

�u∈Xu

Φ1(�u,�t) and Ψ2(�t) =
∑

�v∈Xv

Φ2(�v,�t) (8)

Finally, equation (6) can be rewritten as:

Z =
∑

�t∈Xt

Ψ1(�t) · Ψ2(�t) (9)

The above results can be generalized to the case in which the
graph G is subdivided into R subgraphs Gk (1 ≤ k ≤ R),
each containing a different set of hk cliques. We have then:

G =
R⋃

k=1

Gk and
R∑

k=1

hk = M

62

Figure 1: Example of complexity reduction. The graph is
taken from (Richardson and Domingos 2006). Let G1 be the
subgraph enclosed in the green line; then, N = 15, M =
12, �u = (C(a), F (a, a), F (a, b), F (b, a), F (b, b), C(b)),
�t = (S(a), S(b)), �v = (F (a, c), F (c, a), F (c, b), F (b, c),
S(c), F (c, c), C(c)), r = 8, s = 2, , h = 6. We have
C(N, M) = 393, 216 and C(N, M, r, s, h) = 4608 with
a reduction in the number of evaluated potential functions of
98.8%.

The probability of a world �x can be written as follows:

P (�x) =
1
Z

R∏
k=1

Φk(�x(k)) (10)

where �x(k) contains the variables that appear in Gk. Each
subgraph contributes to the probability distribution with the
product:

Φk(�x(k)) =
hk∏

j=hk−1+1

ϕj(�x(k)) (1 ≤ k ≤ R) (11)

In order to compute Z, we have to use equation (16). In each
Φ(�x(k)) let us partition the set of variables into two groups:
�u(k) ∈ X (k)

u and �t(k) ∈ X (k)
t , such that the variables in

�u(k) only occur inside Gk, whereas the variables in�t(k) may
also occur in some other Gj . We may notice that the sets
of variables �u(k) are all disjoint, by definition, whereas the
sets �t(k) may share some variables among them. Then, let
us define:

�t =
R⋃

k=1

�t(k) ∈ Xt

As a consequence, Z can be rewritten as follows:

Z =
∑

�t∈Xt

⎛
⎝ ∑

�u(1)∈X (1)
u

Φ1(�u(1),�t) ...
∑

�u(R)∈X (R)
u

ΦR(�u(R),�t)

⎞
⎠

For each assignment to the common variables�t, the internal
sums in Z are independent. We can define:

Ψk(�t) =
∑

�u(k)∈X
�u(k)

Φk(�u(k),�t) (12)

Finally, the partition function becomes:

Z =
∑

�t∈Xt

R∏
k=1

Ψk(�t) (13)

The complexity for computing Z through equation (13) can
be evaluated by defining:

h = max
1≤k≤R

hk and s = |�t| and r = max
1≤k≤R

|�u(k)|

Then:

C(N, M,R, r, s, h) = O
(

2s
R∑

k=1

hke|�u
(k)|

)
= O(R h 2r)

Notice that r < n. The above formula also applies to the
case of R = 2.

4 Abstraction in Markov Networks
As inference is exponential in the size of a Markov network,
one way to make it less costly is to apply to it some abstrac-
tion operator, whose effect is to reduce its size. Let us con-
sider a network G partitioned into R subnetworks, as in Sec-
tion 3, and let Gk be one of such subnetwork. Let α(�u(k)) be
an abstraction function that lets the set of nodes that occur
only in Gk collapse into a single Boolean node ξk ∈ {0, 1}.
More precisely:

ξk = α(�u(k)) = 1 = if �u(k) ∈ D
(k)
1

ξk = α(�u(k)) = 0 = if �u(k) ∈ D
(k)
0

By applying the abstraction function α, the network G with
N nodes becomes a network G′ with N ′ = (R+s) nodes; in
fact, each set �u(k) is mapped onto a single node ξk, whereas
the nodes corresponding to�t remain the same. Let us notice
that the subdivision of G into the Gk’s was done by separat-
ing sets of cliques, not set of nodes. Then, each new node
ξk still forms (possibly collapsed) cliques with the nodes in
�t. We may think that ξk and the nodes �t forms a unique
clique which contributes to the abstract probability distribu-
tion Q(ξ1, ..., ξR,�t) by a single potential function Φ′k(ξk,�t);
then:

Q(ξ1, ..., ξR,�t) =
1
Z ′

R∏
k=1

Φ′k(ξk,�t) (14)

Let us now compute the marginal probability distribution of
a generic ξk; from (14) we obtain:

Q(ξk) =
1
Z ′

∑
�t∈Xt

∑
ξj �=ξk

R∏
j=1

Φ′k(ξj ,�t)

=
1
Z ′

∑
�t∈Xt

(
Φ′k(ξk,�t)

R∏
j=1,j �=k

Ψ′j(�t)

)

63

We may wonder whether there exists a definition of the
Φ′k(ξk,�t) (1 ≤ k ≤ R) that makes Q(ξk) (distribution of
ξk computed in the abstract network) equal to P (ξk) (dis-
tribution of ξk computed in the ground network). Using ex-
pression (10), we obtain:

P (ξk) =
1
Z

∑
�t∈Xt

R∏
j=1,j �=k

Ψj(�t)
∑

�u(k)∈D
(k)
ξk

Φk(�u(k),�t)

where D
(k)
ξk

= D
(k)
1 if ξk = 1 and D

(k)
ξk

= D
(k)
0 if ξk = 0.

By comparing expressions P (ξk) and Q(ξk) we see that
P (ξk) = Q(ξk) if we define:

Φ′k(ξk,�t) =
∑

�u(k)∈D
(k)
ξk

Φk(�u(k),�t) (15)

By summing equation (15) for ξk = 0 and ξk = 1, we ob-
tain, by definition, that:

Ψ′k(�t) = Ψk(�t) → Z = Z ′ (16)

We may notice that equality (16) allows Z ′ to be computed
exactly on the abstract network, with a reduced complex-
ity. The partitioning process may be repeated, obtaining
thus multiple layers of abstraction. Moreover, the result
(16) is independent from the specific abstraction function
employed. Then, the selection of α, whose definition is
domain-dependent, provides a degree of freedom to be ex-
ploited in order to preserve additional properties required by
the task at hand.

As mentioned at the beginning, one of the goal of a
Markov network is to allow the probability distribution of
a query q to be computed in presence of an evidence e. For
the sake of simplicity, let us assume that q ≡ xj (q is a single
variable), and that the evidence e ≡ (xi = 1) is the assign-
ment of the value true to another single variable xi. We want
to compute:

P (q|e) =
P (q, e)
P (e)

=
P (xj , xi = 1)

P (xi = 1)
(17)

Usually, it is too expensive to compute (17) directly, be-
cause it involves sums over possibly large set of worlds; then
an approximate value is estimated through Gibbs sampling,
which consists of sampling each node’s truth value given its
Markov blanket (Richardson and Domingos 2006). Using
the abstract network G′, either an exact value can be com-
puted with reduced complexity, or an approximate estima-
tion can be made, depending on the positions of the nodes
xj and xi in G′. There are three cases:

• The query q and the evidence e belong both to the same
vector �u(k) or to �t

• The query q and the evidence e belong one to some Gk

and one to �t

• The query q and the evidence e belong to two different
subgraphs Gk and G�.

The case in which both q and e belong to �t =
(xj , xi, xi1 , ..., xis) is the most favorable, because all the
subgraphs Gk (1 ≤ k ≤ R) can be abstracted to single nodes
ξk. In this case we only need to compute the distribution
Q(�t) by marginalizing over the R variables ξk. The case in
which both q and e belong to �u(k) = (xj , xi, xi1 , ..., xis

) is
analogous, but in this case we may only abstract (R−1) sub-
graphs. In fact, subgraph Gk cannot be abstracted, because,
in this case, we would only obtain from the abstract graph
the probability Q(ξk) = P (ξk), which is an agglomerated
probability over the set of variable in �u(k). Here is one of
the points where the definition of the abstraction function
may intervene: it could be defined (if possible) to be invert-
ible.

If the query q and the evidence e belong one to some Gk

and one to �t, we cannot abstract Gk, and we need the joint
probability distribution over �u(k) and �t. Finally, when the
query q and the evidence e belong to two different subgraphs
Gk and G�, we need to abstract neither Gk nor G�, and we
need the conditional probabilities of the variables �u(k) and
of the variables �u(�) with respect to �t. In fact, knowing �t
makes the �u(k)’s and the �u(�)’s conditionally independent.

If the evidence and/or the query consists of the conjunc-
tion of more than one nodes, more subgraphs cannot be ab-
stracted, by reducing the effectiveness of the approach. In
this case it would be maybe better to accept an approximate
answer to the query, which can be obtained in two ways: one
is by sampling the relevant �u(k), assuming known the �t (an
extension of the method of the Markov blanket), or by defin-
ing an approximate inversion of the abstraction function.

In order to find a subdivision of the graph, any algo-
rithm that searches for clusters of nodes, which are inter-
nally densely connected and externally loosely connected,
may be used. Also algorithms for the minimum cut can be
used. Both types of algorithms need a modification: the out-
put disjoint vertex sets must be extended (rendering them no
more disjoint) in order to include complete cliques; in this
way the variables �t are created.

Another way to proceed (which we did not have yet pur-
sued) is to generate the partition of the graph by demand,
after the query and the evidence have been provided. In this
case, the best would be to include both the query and the
evidence in the same Gk. This is possible by considering
the minimum set of cliques that includes both. If the query
and/or the evidence includes many nodes, this subgraph may
turn out to be quite large.

5 Logical Markov Networks
Let us consider now the case in which the Markov net-
work is a grounding of a First Order Logic knowledge base.
More specifically, let KB = {F1, ..., FK} be a knowledge
base, containing K formulas, and let P be the set of pred-
icate names, with cardinality |P| = S, occurring in it.
Let Pk(Fk) be the set of atomic predicates occurring in
Fk, with cardinality |Pk(Fk)| = qk; let moreover Vk(Fk)
be the set of variables occurring in Fk, with cardinality
|Vk(Fk)| = mk, extracted from a set V AR = {X, Y, Z, ...}.

64

Finally, let A = {a1, ..., an} be a set of constants, and G be
the graph corresponding to the totally instantiated knowl-
edge base with respect to A.

Graph G has N nodes and M cliques. Each node νi in
G corresponds to a ground atom, which can be associated to
a Boolean variable xi. The state of G, i.e., a world, is an
assignment of truth values to all the xi’s. X = {0, 1}N is
set of all possible worlds.

Due to the way it is generated from a Logical Markov net-
work, a ground Markov network has two characteristics: its
structure is determined by the rules in KB, and the potential
functions assume a particular form. Concerning the struc-
ture, a generic formula Fk(X1, ..., Xmk

) generates, in G, a
set of cliques Γk (1 ≤ k ≤ K):

Γk = {γ(k)
1 , ...γ

(k)
hk

} with hk = nmk and
K∑

k=1

hk = M

Each clique has qk vertices. Each clique γ
(k)
j corresponds to

one specific grounding of the formula Fk and has associated
to it a potential function:

Φk,j(�x(k,j)) = exp
[
w1f(�x(k,j))

]
where �x(k,j) contains the variables occurring in the clique,
and f(�x(k,j)) is a Boolean feature that assume value 1, if the
grounding is true, and 0 if it false (in a particular world). The
joint probability distribution can be expressed as follows:

P (x1, ..., xN) =
K∏

k=1

hk∏
j=1

exp
[
w1f(�x(k,j))

]
(18)

=
K∏

k=1

exp
[
w1n(�x(k))

]
(19)

where n(�x(k)) is the number of true groundings of formula
Fk in the particular world considered.

In a ground logical Markov network there is a natural
subdivision of the global graph into subgraphs, by con-
sidering each formula at a time. Formula Fk generates a
set of cliques, all with the same structure, differing only
by the constants that appear in the groundings. It is then
quite natural to consider the set of these cliques a unique
subgraph Gk. Moreover, taken any two formulas Fk and
Fj it can be determined by the formulas themselves which
nodes they have in common (the set of variables �t). For
instance, the graph in Figure 1 corresponds to the ground-
ing, with respect to the set of constants A = {a, b, c},
of the knowledge base KB = {(F1, w1), (F2, w2)}, with
F1(X, Y) = Smoke(X) ∧ Friend(X,Y) → Smoke(Y)
and F2(X) = Smoke(X) → Cancer(X). The values w1

and w2 are the weights associated to the rules. By consider-
ing F1 and F2, it is immediate to see that the predicate S(x)
is in common for each of its instantiations.

Then, if by subdividing the graph reported in Figure 1
as described in Section 4, we obtain the abstract graph Ga

reported in Figure 2. The consideration done in Section 4 for
a generic Markov network applies to this case also, provided
that the new potential functions are defined as in (15).

Figure 2: Abstract graph obtained from the ground one re-
ported in Figure 1. The abstract graph has been obtained
by considering each subgraph corresponding to the instan-
tiation of every formula in the knowledge base. The nodes
S(a), S(b) and S(c) are in common between the two sub-
graphs.

In Ga the Boolean variables ξ1 and ξ2 derived from two
abstraction functions:

ξ1 = α1

(
F (a, a), F (a, b), F (a, c), F (b, a), F (b, b),

F (b, c), F (c, a), F (c, b), F (c, c)
)

ξ2 = α2

(
C(a), C(b), C(c)

)
In this case the functions could be defined as the OR of the
components, or their AND, or any other logical combina-
tion (or other type of function) suited for the task. Actu-
ally, by comparing the ground graph G and the abstract one
Ga, we may notice that the association of the variables in α1

(α2) with ξ1 (ξ2) corresponds to Hobbs’ domain abstraction,
based on the notion of indistinguishability (Hobbs 1985),
with respect to the predicates F (x, y) and C(x). In this
case, the variable ξ1 is a representative for any of the com-
ponent F(a,a), ... , F(c,c), in the sense that any of the latter
assumes the truth value derived for ξ1. The same holds for
ξ2. We may also notice that the graph Ga represents a kind
of ”lifted” graph, to perform lifted inference (Poole 2003).

View as a domain abstraction, the joint probability distri-
bution in Ga can be expressed in a way analogous to (18).
By giving an evidence e ≡ (S(b) = 1) and a query q ≡
F(a,b), we obtain, from Ga:

P (F (a, b) = 1|S(b) = 1) = 0.5

The true value, in the ground network, is indeed P(F(a,b) =
1) = 0.5. The equality between the abstract and the ground
value of the probability of the query derives from the sim-
metry of the network. Experiments with generic topological
structures show that the abstract value is, in general, only

65

an approximation of the ground one. The estimation of the
goodness of the approximation depends on the abstraction
functions used.

6 Conclusions
In this paper we have described a preliminary investigation
on the use of abstraction operators to reduce the complexity
of inference in Markov network. We have shown that two
kinds of abstraction (collapsing nodes and making constants
indistinguishable) help reaching the goal. Other types of ab-
straction could be considered as well, for instance propo-
sitionalization. A related approach, applicable to generic
CSPs, has been proposed by Lecoutre et al. (2000), who
describe a method for abstracting CSPs. Even though not di-
rectly applicable to Markov networks, interesting links can
be established. Other relations also exist with the paper by
Shavlik and Natarajan (2009). In this paper the authors de-
cribes a method for speeding up inference in ground Markov
neworks by avoiding groundings that are certainly true/false.

The presented examples are only indicative of a method-
ology, and experiments on much larger networks and with a
variety of abstraction operators are needed; this is the next
step of this research. The methodology proposed is partic-
ularly well suited to logic Markov network, in which sym-
metry properties, due to the very way they are constructed,
hold and can then be exploited.

References
Arenas, A.; Fernández, A.; and Gómez, S. 2008. Analysis
of the structure of complex networks at different resolution
levels. New Journal of Physics 10:053039.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. Springer.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artificial
Intelligence Research 30:51 – 100.
Clauset, A.; Moore, C.; and Newman, M. E. J. 2008. Hi-
erarchical structure and the prediction of missing links in
networks. Nature 453:98–101.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted
first-order probabilistic inference. In IJCAI, 1319–1325.
Epstein, S. L., and Li, X. 2009. Cluster graphs as abstrac-
tions for constraint satisfaction problems. In 58-65., ed.,
Proc. SARA-09.
Harry, D., and Lindquist, D. 2004. Graph abstraction
through centrality erosion and k-clique minimization.
Hobbs, J. R. 1985. Granularity. In 432-435., ed., Proc.
IJCAI-85.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction: a
graph oriented approach. Artificial Intelligence 85:321–361.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions on Information Theory 47(2):498–519.
Milch, B., and Russell, S. J. 2006. General-purpose mcmc
inference over relational structures. In UAI.

Poole, D. 2003. First-order probabilistic inference. In IJCAI,
985–991.
Poon, H., and Domingos, P. 2006. Sound and efficient infer-
ence with probabilistic and deterministic dependencies. In
AAAI.
Poon, H.; Domingos, P.; and Sumner, M. 2008. A general
method for reducing the complexity of relational inference
and its application to mcmc. In AAAI, 1075–1080.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107–136.
Riedel, S. 2008. Improving the accuracy and efficiency of
map inference for markov logic. In UAI, 468–475.
Saitta, L.; Henegar, C.; and Zucker, J.-D. 2009. Abstracting
complex interaction networks. In 190-193., ed., Proc. SARA-
09.
Shavlik, J., and Natarajan, S. 2009. Speeding up inference in
markov logic networks by preprocessing to reduce the size
of the resulting grounded network. In Proc. IJCAI 2009,
1951–1956.
Singla, P., and Domingos, P. 2006. Memory-efficient infer-
ence in relational domains. In AAAI.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In AAAI, 1094–1099.
Zhang, S.; Ning, X.; and Zhang, X. 2007. Graph kernels, hi-
erarchical clustering, and network community structure: ex-
periments and comparative analysis. Eur. Phys. J. B 57:67–
74.

66

