
Using Commodity Parts to Build a Low-Cost Autonomous Robot

James Davis, Jerrad Funderburk, Daniel Gay, Revarr Johnson, Robert Phares,
Daniel Thompson, Andrew McKenzie and Monica Anderson

The University of Alabama,
Electrical and Computer Engineering

Tuscaloosa AL 35487

Abstract

In an effort to showcase a robot with a low barrier to en-
try, we designed and implemented a robot constructed
rom off-the-shelf parts at a total cost of $1500. The im-
plementation team consisted of undergraduates in the
electrical and computer engineering design class. The
University of Alabama competed in the 2010 AAAI
Small-scale manipulation challenge.

Introduction

The University of Alabama competed in the small-scale ma-
nipulation table-top chess challenge. The entry touts a de-
sign/implementation comprised of inexpensive off the shelf
components. An overview of the design/approach is in sec-
tion 2. Section 3 discusses the robots ground movement.
Section 4, 5 and 6 discusses vision, manipulation, and the
chess engine. The conclusion is in section 7.

Approach

The robot was built under the idea that it should be made
using off the shelf parts, which should reduce the cost and
complexity of the project. It reduced the overall cost of the
arm because we did not need any custom built hardware.
It also reduced the amount of the code because we did not
need to write custom drivers for the hardware. If something
breaks, like a motor; we can simply buy it and simply plug
it in. Essentially, besides the custom written code, the arm
is a plug and play system. The robot cost approximately
$1500 to build. The robot was broken into four subsystems:
the base; manipulation (the arm); vision (image processing);
and a chess engine. All of the systems will be attached to the
base and connected/run on an on-board computer. The base
subsystem moves the robot accurately in and out of the play
zone. The manipulation system is responsible for properly
moving pieces. The vision system is responsible for deter-
mining the positions of the pieces on the board and localiz-
ing the base. The chess engine decides the best move for the
current board configuration. A rough sketch of the robot is
shown in Figure 1. More details of each system are included
below.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sketch of robot

Base

The base of the robot performs a simple function: mov-
ing linearly, toward and away from the chessboard. How-
ever, its proper function is pivotal to the design, given the
hard-coded approach the arm and manipulation system is
using. The base system consists of an iRobot Create (i.e.
a Roomba costing around $100) connected to the main com-
puter (around $300). The Creates localization capabilities
are inadequate for the level of accuracy required for this
task, so the base system will work with the vision system
to ensure consistent alignment relative to the chessboard.

Vision

We are using the Creative Technologies Zii EGG ($400) to
capture images of the chessboard. The Zii EGG will be stat-
ically mounted upon an L-shaped stand attached to the mo-
bile base as seen in the figure. This allows a birds-eye view
of the chessboard. The Zii EGG has the ability run either
the Plaszma OS or Android OS. We are using Android due
to ease of use and reliability. We are attempting to handle the
majority of the image processing workload on-board the Zii
EGG. The overall approach for vision is simple; keep track
of a previous image and a new image. The two images will
be used to do a frame difference type scheme. The frame
difference scheme will be used to decide whether or not a

6

Robotics Program: Enabling Intelligence through Middleware: Papers from the 2010 AAAI Workshop (WS-10-09)

piece was moved and which move took place. The infor-
mation extracted from the images will include chessboard
location, piece location, and piece color. The information
will be combined to relay information regarding the chess-
board state to the robotic arm via client/server communica-
tion. We have implemented Sobels method for edge detec-
tion with template matching to find the intersections of the
chessboard. By using the intersections of the chessboard, we
will be able to determine the positions for each chessboard
space for use of determining location occupancy. We then
parse through each space utilizing blob detection in order to
determine if the space is occupied as well as determine the
piece color.

Manipulation
The AL5D robotic arm ($500) by Lynxmotion is used for
manipulation. The main manipulation goals are consistently
picking up and placing down pieces regardless of orienta-
tion to the desired location; and not disturbing the pieces
that are not involved in the current move. To achieve these
goals, we use position mapping. Communication to the arm
happens through the SSC-32 Servo Controller from an on
board computer, via USB-to-Serial. The on board computer
($300) operates with C++ code on a Linux OS. To improve
consistency with manipulation, we split up pieces into three
categories: Bishop/Pawn/Rook, Knight, and King/Queen.
These pieces are put into their category based on height,
weight, and symmetry. For position mapping, we initial-
ize two multi-dimensional arrays from different files (local

coordinates and global coordinates). The files consists of
strings such as: #0 p1210 s500 #1 p1700 s500 #2 p1570
s500 #3 p1140 s500 //a5 up. The local coordinates file in-
cludes piece specific board locations. These positions in-
clude picking up and placing down pieces (different for each
category). The global coordinates consist of board positions
regardless of piece type. These positions include navigating
in space (above the pieces).

Chess Engine

To produce a legal, competitive move, we are interfacing an
existing chess engine. Conveniently, chess engines use one
of two protocols: the Universal Chess Interface (UCI) or the
Chess Engine Communication Protocol. The UCIs docu-
mentation is more robust, so we wrote a program to com-
municate with UCI. The board configuration is passed to the
program as a parameter whereupon it formats this informa-
tion and sends it to the chess engine. Eventually, the chess
engine decides on a move that is returned to the caller.

Conclusion

This paper has given the details of the University of Al-
abamas entry for the 2010 AAAI Robotics Exhibition
and Workshops small scale manipulation challenge. The
chess robots four subsystems were explained in some de-
tail. A video showing the robot in action can be found at
http://robotics.cs.ua.edu/media/UAChess.m4v

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

