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Objectives and Methods

We aim to investigate the possibility of using a multi-phase
learning paradigm for complex low-level skill acquisition to
learn different aspects of the skill using different demonstra-
tion and learning methods, possibly from different demon-
strators, and at different spatial and temporal resolutions as
needed. In this work, we use the biped walking problem on
a full-body humanoid robot as the skill to be learned, as it is
a challenging task due to the complex dynamics of the walk
process in a high dimensional state and action space. While
approaches that capture the analytical physical properties of
the body have been proposed, they tradeoff the complexity
of the model in favor of achieving tractability and real-time
performance. Inevitably, the complications arising from the
simplifications lead to occasional losses of balance while the
robot is walking, leaving a difficult understanding on how to
resolve the tradeoff between the complexity of an extended
analytical model and its computational performance.

The Aldebaran humanoid robot, Nao (Figure 1(a)), is a
4.5 kilograms, 58 cm tall humanoid robot with 21 degrees
of freedom (www.aldebaran-robotics.com). As opposed to
many other humanoid robot designs, Nao does not have sep-
arate hip yaw joints (along the Z axis), making it difficult to
develop efficient walking motions.

(a) Aldebaran Nao Robot. (b) Frame of reference
for sensors.

There have been approaches to task and skill learn-
ing that utilize learning from demonstration paradigm for
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biped and quadruped walk learning (Nakanishi et al. 2004;
Grollman and Jenkins 2007), low level motion planning (Ar-
gall, Browning, and Veloso 2008), and task learning for sin-
gle and multi-robot systems (Chernova and Veloso 2009;
2008).

We propose a novel approach for learning biped walking
on the Aldebaran Nao humanoid robot by breaking the learn-
ing process into two phases. In the first phase, we take ad-
vantage of an existing biped walking algorithm, recording
good walking sequences to summarize in a single complete
walk cycle. The obtained walk cycle is then played back,
resulting in an open-loop walking behavior. In the second
phase, a corrective policy is derived from a set of human
demonstrations provided in real time while robot is perform-
ing the open-loop walk behavior. The learned corrective pol-
icy is then used to modify the joint commands from the open
loop walk cycle in a way to keep the robot in balance while
walking.

Proposed Approach

A walking algorithm computes a vector of joint commands
and sends it to the robot at each execution timestep. We
collect a set trials of the robot walking forwards using an
existing walking algorithm. We then compress the observed
walk motion data into a single walk cycle. In a first phase,
we introduce a walk behavior as a playback of the single
walk cycle. Playing back the recorded walk cycle in a loop
results in an open-loop walking behavior.

Our second phase consists of a human demonstrator pro-
viding corrective feedback signals in real time when robot
starts losing its balance while performing playback walk ac-
tion. One of the major engineering problems in using human
feedback for bipedal walk learning is that it is required to
provide feedback in real time and without interfering with
the dynamics of the robot. We devised a method in which
the demonstrator uses the Wiimote wireless game controller
with the Nunchuk extension (http://www.nintendo.com).
Both the controller and the extension are equipped with sen-
sors allowing the absolute pitch and roll angles of the han-
dles to be computed. Our algorithm uses the computed ori-
entations of the handles in 3D space to modify the joint an-
gles in the intermediate steps of the walk cycle in such a
way to make the robot to bend along roll and pitch direc-
tions (Figure 1). This setup allows the demonstrator to pro-
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vide corrective feedback signals without touching the robot
(Figure 2).

Figure 1: Example demonstrator feedbacks. 1) Neutral po-
sition. 2) Roll correction 3) Neutral position. 4) Pitch cor-
rection.

Figure 2: A snapshot from a demonstration session. A loose
baby harness is used to prevent major hardware damage in
case of a fall.

The recorded corrective demonstration data is then
mapped to the recorded sensory readings at the time of cor-
rection. Accelerometer readings which are in the interval
[−128, 127] were used as the sensory input. To model the
noise associated with the correction data, we fit a normal
distribution on the correction data points received for all 256
possible values of the accelerometer. The means of the nor-
mal distributions are stored in a lookup table. During the
autonomous execution, the computed mean for a particular
sensory reading is used as the correction value.

Results

We used the walking algorithm proposed by Liu and Veloso
which uses online ZMP sampling (Liu and Veloso 2008)
for learning the correction policy. The efficiency of learned
feedback policy is then evaluated using the following walk-
ing algorithms as the open-loop walking algorithm:

• W1: The default walk algorithm provided by Aldebaran
Robotics with default parameters and 30 timesteps per
walking step.

• W2: Liu and Veloso’s walking algorithm.

For each algorithm, 10 runs with original open-loop
method and 10 runs using the learned policy for correction
were conducted and the distance traveled before falling was

recorded. The results are given in Figure 3. The learned pol-
icy has improved the performance of both algorithms signi-
cantly despite that the policy was derived only using Liu and
Veloso algorithm.

Figure 3: Performance evaluation results: a) W1, open-loop,
b) W1, learned policy using accelerometer readings, c) W2,
open-loop, d) W2, learned policy using accelerometer read-
ings.
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