
YARP, a Thin Middleware for (Humanoid) Robots

Paul Fitzpatrick, Lorenzo Natale and Giorgio Metta
Italian Institute of Technology

Via Morego, 30
16163 Genova, Italy

Abstract

YARP stands for “Yet Another Robot Platform.” It is
a robot middleware that began life as a thin layer over
the QNX real-time operating system to adapt it for use
by humanoid robots. It is now used on all kinds of op-
erating systems and robots around the world. It is free
and open software, released under the LGPL. Over the
past decade, YARP’s communication model has proven
to be at a sweet spot that combines efficiency, flexibility,
and ease of use.

YARP is used to build robot control systems as a collec-
tion of programs communicating in a peer-to-peer way, us-
ing an open-ended family of connection types (TCP, UDP,
multicast, local, shared memory, MPI, mjpeg-over-http,
XML/RPC, TCPROS, plain-text, etc.) that can be swapped
in and out as need dictates. It also supports similarly flex-
ible interfacing with hardware devices. The strategic goal
of YARP’s developers is to increase the longevity of robot
software projects (Fitzpatrick, Metta, and Natale 2008).

YARP’s first version coalesced in 2000. It was shaped by
the problem of doing productive research despite constant
flux in our robot platforms (hence the name). Since then, ex-
perience with incompatible architectures, frameworks, and
middleware – which we like to call collectively “muddle-
ware” – has taught us to make YARP a reluctant middle-
ware, with no desire or expectation to be in control of a
user’s system. Some see YARP’s restraint as a negative, but
for others it is appealing; a typical user comment in a re-
cent survey was: “It’s lightweight and easy to use. I like
the multi-platform support, and its non-monopolistic philos-
ophy.”

Communication in YARP generally follows the Observer
design pattern (Gamma et al. 1995). Port objects de-
liver messages to any number of observers (other Ports),
in any number of processes, distributed across any number
of machines, using any of many underlying communication
protocols. Ports can be connected on an individual basis
or as topic-based groups. A message from a single Port
may be sent simultaneously across multiple connections us-
ing distinct protocols. Ports can be connected to non-
YARP network entities, such as IP cameras, web servers,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: YARP works on complex humanoids such as the
iCub, on embedded systems, and on everything in between.

or ROS nodes (Quigley et al. 2009). All of this can re-
quire some fancy footwork by YARP, such as grouping mul-
ticast connections, or coordinating with a foreign middle-
ware. YARP has a similarly flexible device interface. Indi-
vidual YARP-using programs can be upgraded over time to
deal with changes in hardware or networking without touch-
ing user source code, and without needing to make a “big
bang” change of all programs at once.

Stay out of my build

YARP was born in 2000 on an early humanoid robot (called
Kismet) controlled by a set of Motorola 68332 processors,
an Apple Mac, and a loose network of PCs running QNX,
Linux, and Microsoft Windows (Metta, Fitzpatrick, and Na-
tale 2006). Communication on this robot was an ad-hoc
mixture of dual-port RAM polling, QNX message passing,
CORBA, and raw sockets. From the beginning, YARP has
been built with the implicit assumption that it is just one
part of the users’ environment. So YARP restrains itself to
behave like any other library, such as OpenCV, ODE, etc.,
rather than expecting any special treatment.

But there’s a good reason why most middleware are more
than just regular libraries: marshalling/demarshalling. To

9

Robotics Program: Enabling Intelligence through Middleware: Papers from the 2010 AAAI Workshop (WS-10-09)

send user data between programs, that data must be trans-
lated to and from its format in memory to its format “on the
wire.” It is commonplace to write a parser to convert a user’s
structure description into generated code for performing this
conversion. YARP has historically skirted around this ap-
proach, for two main reasons. First, it is invasive, since
it insinuates the middleware into the user’s build toolchain
(imagine how that much fun trying to use two such middle-
ware is). Second, it can be inefficient, potentially leading to
time wasted making copies of large data structures (YARP
goes to great lengths to make sure that large structures such
as images get transmitted with zero extra copies made). As
computer scientists, it is hard to resist adding automation for
this, but the cost of meeting that automation’s requirements
should be borne in mind. A quote from a user:

“Compared to, e.g., CAVIAR and Psyclone, YARP
looks like a fairly standard library - neither does it do
its own message scheduling nor does it provide heavy-
handed semantics for message definitions or network-
ing. That may be its very strength.” (Stefánsson, Jons-
son, and Thórisson 2009)

The telnet test

We’ve found that a useful way to evaluate a middleware
is this: can a user monitor and insert traffic between pro-
grams using just a telnet client? The telnet program
can open (more or less) raw TCP sessions, and is commonly
used to manually send messages to servers speaking SMTP,
HTTP, IRC etc. We started applying the telnet test to
YARP out of past frustration with other middleware, where
simply passing a few numbers to a collaborator’s program
required jumping through a dozen hoops. We therefore (fol-
lowing the “golden rule”) make it easy for others to send a
few numbers to a YARP-based program without having to
dig through protocol specifications, or link against our li-
braries, or use our build machinery – all of which can be a
time-sink. This is similar to Google’s “data liberation front,”
a subproject to ensure that it is easy for users to migrate their
data from a service, avoiding lock-in.

A YARP network is designed to be usable without YARP.
This doesn’t happen by accident. For example, we took
care that YARP connections could be initiated by either the
“sender” or “receiver,” with the logical flow of data being
freely reversable. This is important for supporting a wide
range of protocols, which may be pull or push in nature, but
it is also means a foreign program can both send input to and
read from a YARP program without getting stuck writing a
server for at least one of the directions of data flow. Exam-
ples of making YARP connections without using the YARP
libraries are available in C, Python, and Tcl, and of course
for telnet. Users seem to value the interoperability that
YARP provides:

“YARP was chosen as the communication library with
which all communication protocols were implemented
as one of the goals of the design of the communica-
tion stack was to make it possible to interact with pro-
grams that are developed without using MeRMaID.”
(Barbosa, Ramos, and Sequeira 2009)

Conclusions

Why not use YARP? YARP’s commitment to portability
slows its growth, since taking on any new dependency is
complicated. A full native implementation of YARP exists
only in C++; we rely on SWIG for wrappers in other lan-
guages. Lack of an interface definition language (IDL) and
associated code generation can lead to some tedium imple-
menting classic RPC-style code. YARP currently uses a cen-
tral name server to do match-making, which can be problem-
atic for applications such as modular robotics where there is
no clear central hub1. The LGPL license that YARP is under
is commercial-use friendly, but still could complicate certain
proprietary uses of the library.

Why use YARP? If you’re looking for something portable,
light-weight, and flexible, then YARP is it. YARP serves
a truly diverse, interdisciplinary community. While YARP
grew up on high-end humanoids with lots of resources, it
works fine on embedded systems. It has a flexible and open
model of connections that has stood the test of time. It places
no constraints on the user’s build system (though we are big
fans of CMake). And it passes the “telnet test,” a prop-
erty of just about every successful, durable network protocol
or format.

References

Barbosa, M.; Ramos, N.; and Sequeira, J. 2009. MeRMaID
middleware for multiple robot intelligent decision-making.
Journal of Software Engineering for Robotics 1(1):1–15.
Fitzpatrick, P.; Metta, G.; and Natale, L. 2008. Towards
long-lived robot genes. Robotics and Autonomous Systems
56(1):29–45.
Fitzpatrick, P.; Metta, G.; and Natale, L. 2010. The CMak-
ing of a humanoid. In Kitware Source: Software Developer’s
Quarterly, number 13. Kitware. 7–9.
Gamma, E.; Helm, R.; Johnson, R.; and Vlisside, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA, USA: Addison-Wesley.
Huang, A. S.; Olson, E.; and Moore, D. 2010. LCM:
Lightweight communications and marshalling. In Int. Conf.
on Intelligent Robots and Systems.
Metta, G.; Fitzpatrick, P.; and Natale, L. 2006. YARP: Yet
Another Robot Platform. International Journal of Advanced
Robotic Systems.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-
source robot operating system. In ICRA Workshop on Open
Source Software.
Stefánsson, S. F.; Jonsson, B. T.; and Thórisson, K. R. 2009.
A YARP-based architectural framework for robotic vision
applications. In Proc. of International Conference on Com-
puter Vision Theory and Applications, number 1, 65–68.

1LCM (Huang, Olson, and Moore 2010) has an interesting so-
lution to this: it commits to UDP multicast for all messages, with
broadcast messages filtered by clients; in this case, a central name
server is not needed, reducing a point of failure.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

