
Brown ROS Package: Reproducibility for Shared Experimentation
and Learning from Demonstration

Sarah Osentoski, Graylin Jay, Christopher Crick, Odest Chadwicke Jenkins
Department of Computer Science

Brown University
Providence, RI , 02912 USA

{sosentos | tjay | chriscrick | jenkins }@cs.brown.edu

Abstract

We describe our efforts toward developing infrastructure
for shared remote robotics laboratories that allow repro-
ducible robotics experimentation and large scale learning
from demonstration (LfD). Our goal is to create a facility
where users demonstrate desired tasks by teleoperating robot
platforms through video-game style web-based interfaces,
providing data that LfD approaches will turn into robot poli-
cies. We describe a selection of open source tools, provided
by the Brown robotics lab, created in service of building such
a remote lab.

Introduction

Our research centers around the creation of a remote robotics
laboratory to enable large-scale Learning from Demonstra-
tion (LfD). Before robots can enter everyday home and
workplace environments, roboticists must lift the substantial
burden of entry that currently prevents end users from eas-
ily interacting with and programming robots. We propose
“large-scale robot LfD” with a “demonstrate, test, iterate”
development process that uses a repository-type structure in
which massive amounts of demonstrated data can be stored,
tagged, filtered, and “compiled” into controllers. Our be-
lief is that many LfD approaches (summarized by (Argall
et al. 2009; Billard et al. 2008)) will benefit from access
to truly large stores of data, in the same way that simple
machine learning techniques in other contexts have become
vastly more capable when exposed to the wealth of infor-
mation now easily available on the internet. Our remotely-
accessible laboratory environment will provide a large num-
ber of end users the ability to remotely interact with robots,
incidentally creating large databases of demonstration data.

Towards these goals we have been working on open re-
sources to enable general users and researchers to run exper-
iments on robots. Our tools are built upon ROS (Quigley et
al. 2009), Willow Garages’s robot middleware system. The
software discussed in this paper is available in the brown-
ros-pkg1.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://code.google.com/p/brown-ros-pkg/

Supported Platforms

Our work has focused on off-the-shelf systems that are avail-
able for purchase by other research groups. While much of
the work in the Brown ROS Package can be used on any plat-
form running ROS, we also provide drivers for two widely-
available platforms: the iRobot Create and the Aldebaran
Nao (pictured in Figure 1).

(a) iRobot Create (b) Aldebaran Nao

Figure 1: Platforms supported in the Brown ROS package .

Tools For Lab Environment

In this section, we describe tools we have built towards cre-
ating a remote lab environment and to aid the community in
developing robot applications.

Gscam This package leverages Gstreamer (Gstreamer
2010), a multi-media framework used by applications such
as Gnome. It provides compatibility between ROS and cam-
eras supported by Linux. This allows any camera supported
by Linux to be used by ROS with ease. Gscam can also
make realtime adjustments to video streams in order to add
features such as white balancing for cameras that lack such
processing abilities.

Augmented Reality Tag Recognition We have created
a package wrapping the ARToolkit (Kato & Billinghurst
2004), a software library for building augmented reality
(AR) applications. Robotic tasks often depend upon visual
information. However many vision algorithms require pre-
cise camera calibration, consistent lighting conditions, and
significant knowledge of the environment. AR tags can be

21

Robotics Program: Enabling Intelligence through Middleware: Papers from the 2010 AAAI Workshop (WS-10-09)

added to robotic domains to augment or replace vision al-
gorithms for some tasks. AR tags, pictured on the right of
Figure 2, can be used to mark and identify objects of inter-
est, as landmarks for localization, or to command robots in
various ways.

This package is fully integrated with the ROS build envi-
ronment. This enables ROS users to use ARToolkit through
a ROS messaging interface. It allows users to use ARToolkit
as they would any other ROS package, without linking or a
secondary external compilation step.

Figure 2: A user uses an AR tag to teleoperate the arm of a
simulated robot.

rosjs rosjs is a light-weight Javascript (E.C.M.A. Interna-
tional 2009) binding for ROS that allows developers to ex-
pose robot functionality as web services. rojs is designed
to enable end users and developers to leverage the capabil-
ities of ROS through a standard web browser. Developers
of robot applications can leverage the power of HTML to
build engaging applications and interfaces for robots quickly
without recompiling multiple ROS nodes. Additionally,
rosjs allows users to access and run ROS-based applications
without the need for any installed software beyond a plain
browser. rosjs exposes underlying ROS services and topics
as objects. It also extends ROS by providing mechanisms
for security and data logging.

rosjs consists of a server and a pure Javascript library. It
is not tied to any particular web-server or framework; it even
works when served remotely. rosjs uses websockets which
provide low latency for teleoperation, closed-loop control,
or a variety of other robot applications.

Remote Lab

The tools we have discussed in the previous sections are part
of our larger goal to create a remote laboratory. We envision
users who will be able to schedule time on the robot and
interact with the robot using a remote web interface. This
interface can be used to demonstrate tasks or to visualize
the robot as it performs tasks provided by custom built con-
trollers. During each session data is logged in stored in a
repository that is publicly available. Custom controllers and
learning algorithms can use the data and provide policies for
desired tasks on the robot.

Many of the tools we have discussed focus upon user in-
teraction with and visualization of the robot. Many differ-
ent types of visualization are possible using rosjs. Figure 3

Figure 3: Example of a remote laboratory interface in which
users navigate a robot through a maze with a visualization
of the AR tags visible to the robot.

shows one potential interface created using rosjs. Since the
lab is subject to latency across the internet, visualizations
must be carefully selected. High quality video may require
a substantial amount of bandwidth and thus create a situa-
tion where the image that the user sees is not an accurate
reflection of the state of the robot. An additional considera-
tion is that the type of visualization that is provided to an end
user may influence the type of commands they provide to the
robot. Humans are able to leverage a large amount of infor-
mation from a video stream that the robot is unlikely to be
able to process. However the visualization must be intuitive
to humans so that they can provide quality demonstrations.

Acknowledgements

We thank the members of and students who have worked
with the Brown Robotics Laboratory, especially Jesse But-
terfield, Gal Peleg, and Sam Pucci.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57:469–483.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Siciliano, B., and
Khatib, O., eds., Handbook of Robotics. Secaucus, NJ, USA:
Springer. 1371–1394.
E.C.M.A. International. 2009. ECMA-262: EC-
MAScript language specification, 5th ed. Online.
http://www.ecma-international.org/
publications/standards/Ecma-262.htm.
Gstreamer. 2010. Gstreamer: open source multimedia
framework. Online. http://www.gstreamer.net/.
Kato, H., and Billinghurst, M. 2004. Developing ar applica-
tions with artoolkit. In ISMAR, 305.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS:
an open-source robot operating system. In Proc. Open-
Source Software workshop of the International Conference
on Robotics and Automation.

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

