
Low-Cost Manipulation Powered by ROS

Morgan Quigley, Alan Asbeck, and Andrew Y. Ng
Computer Science Department, Stanford University

{mquigley, aasbeck, ang}@cs.stanford.edu

Introduction
In recent years, substantial progress has been made towards
real-world usage of robots for home and office automation.
Continued advances in computational power, sensing, and
battery technology have resulted in rapid progress towards
true “personal robots.” However, the cost of state-of-the-art
platforms remains a daunting challenge to practical deploy-
ments, as do human-robot interaction and safety concerns.
Furthermore, as robots continue to become more sophisti-
cated, software integration, performance, and reliability is-
sues are becoming ever more important. Our AAAI 2010
Robotics Workshop exhibit, demonstrated our recent work
in both low-cost manipulation and large-scale robotics soft-
ware integration. The following sections discuss specific as-
pects of mechanism and software design.

Low-cost Manipulation
We are investigating several techniques for reducing the cost
of robotic manipulation. Our goal is a manipulator with a
roughly anthropomorphic workspace, 2-kilogram payload,
several-millimeter repeatability, and a $3000 (or lower) bill
of materials. We have investigated several cost-reduction ap-
proaches, and our current work aims to exploit the mechani-
cal simplifications and reduced control-system requirements
made possible by introducing compliant elements such as
springs and elastomers in the manipulator drivetrain. Our
approach also aims to employ grounded or nearly-grounded
actuators (i.e., motors mounted in the torso or shoulder of
the robot, as opposed to flying on the manipulator), resulting
in a lightweight manipulator which can be readily fabricated
using rapid-prototyping methods in wood or sheet metal.

The manipulator we brought to the AAAI 2010 Robotics
Workshop is photographed in Figure 1. This 7-dof manip-
ulator was prototyped using laser-cut plywood and off-the-
shelf mechanical hardware. The first four degrees of free-
dom are driven by commodity stepper motors: one pair
in the torso and one pair in the first link of the shoulder.
These four degrees of freedom have series-elastic couplings
between remote cable-driven capstans and their respective
links, which decouples the motor inertia from the link. As
has been well documented in the robotics literature, series-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The low-cost compliant manipulator shown at the
AAAI 2010 Robotics Workshop

elastic designs sacrifice control bandwidth, but have im-
proved human safety, simpler interactions with the environ-
ment, and intrinsic force sensing. We have found experi-
mentally that these properties of series-elastic actuation are
a good match for our low-cost design goals: relaxing the
mechanical tolerances of manipulator manufacture does not
dramatically reduce bandwidth beyond the inherently low
control bandwidth of series-elastic designs.

To demonstrate the dexterity of the manipulator in a live
setting, we constructed a teleoperation scheme by affixing
four magnetometers and inertial sensors to a shirt, such that
they were tightly attached to the teleoperator’s torso, upper
right arm, lower right arm, and right hand. This allowed
recovery of the teleoperator’s hand position and orientation,
which were fed into an inverse-kinematics solver to compute
joint-angle targets for the manipulator. At the AAAI 2010
Robotics Workshop, we used this control scheme to play a
game of chess, as shown in Figure 2.

23

Robotics Program: Enabling Intelligence through Middleware: Papers from the 2010 AAAI Workshop (WS-10-09)

Figure 2: Playing chess via teleoperation: arm motions of
a human teleoperator were transformed into joint-angle tar-
gets for the low-cost manipulator.

Figure 3: A high-level view of the ROS software stack, il-
lustrating that ROS layers on top of traditional operating
systems and can facilitate communications between multi-
ple machines.

Robotic Middleware: ROS
In collaboration with researchers at Willow Garage and else-
where, we have developed the Robotic Operating System
(ROS), a framework for large-scale integration of robotic
software. Although ROS itself is one of dozens (if not
hundreds) of message-passing frameworks available, we
believe that its low-level architecture of anonymous pub-
lish/subscribe and “non-intrusive” implementation pattern
increases its usability and relevance for robotics research,
and (importantly) allows easier code re-use from other
robotics frameworks or standalone libraries.

Specifically, the design of ROS encourages low-level soft-
ware to make few assumptions about higher layers of the
software stack, and the ROS client library itself makes
very few assumptions about the program structure hosting
it. This philosophy can be summarized as “we don’t wrap
main()”, and allows a variety of software-engineering
paradigms to be employed, such as component-based graph-
ical structures (e.g., an image-processing pipeline), object-
oriented remote procedure calls (e.g., a knowledge base), or,
most commonly, hybrid systems which use a combination of
message-based and transaction-based structures.

Furthermore, we designed ROS to support hot-swapping
of modules in a running system, a capability which greatly
eases development on highly complex robots such as the
Willow Garage PR2, which uses dozens of ROS programs
to compose the runtime environment. This hot-swap abil-
ity, coupled with the anonymous publish/subscribe architec-
ture, is exploited by a large collection of tools which can
interact at a meta-level with ROS message streams. For ex-

Figure 4: The ROS code organization hierarchy.

ample, logging or visualization programs can be “injected”
into a running ROS system, where they subscribe to data
streams without any other node being aware of their pres-
ence. Other tools perform message playback, routing, filter-
ing, introspection, and many other operations.

The intended place of ROS within the software stack is
shown in Figure 4, which emphasizes that ROS is not an
operating system in the traditional sense; rather, it provides
further layers of abstraction to aid the development of com-
plex robot software.

Over the past two years, the ROS user community has
grown far beyond its origins at Stanford University and
Willow Garage; our software crawler indexes over 30
open-source repositories from universities and corporations
around the world, which collectively host over 1200 pack-
ages (the fundamental unit of the ROS build system). These
packages range from low-level device drivers to high-level
executives, including components for navigation, manipula-
tion, computer vision, human interfaces, etc.

With this enlarged user community comes the need for
tools to organize and distribute large amounts of software
written by many different entities. To address this challenge,
we developed the organizational system shown in Figure 4.
Executables and libraries are built in Packages. Collections
of packages that are tested together are versioned simulta-
neously as Stacks. In turn, collections of stacks which are
tested together are called Distributions. The intent is for
ROS Distributions to serve as stable build targets, much like
distributions of traditional operating systems (e.g., Windows
7, Mac OS X 10.6, Ubuntu Linux 10.04), and have a pre-
dictable 6-month release schedule.

Summary and Future Work
Our exhibit at the AAAI 2010 Robotics Workshop demon-
strated our recent work in low-cost compliant manipulation
as well as robotics software engineering. We intend to con-
tinue developing low-cost manipulators, exploring the use
of sheet-metal fabrication techniques as well as experiment-
ing with various non-anthropomorphic kinematic structures.
The ROS-based software used in out demonstration can be
downloaded from http://stanford-ros-pkg.googlecode.com.

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

