
An Intensive Introductory Robotics
Course Without Prerequisites

Julian Mason and Gavin Taylor
Duke University

Abstract

We introduce an introductory robotics course with no pre-
requisites which makes use of a novel programming package
to explore modern robotic concepts without significant initial
investment in teaching programming.

Introduction We present the details of a first course in
robotics, targeted to the 11- to 16-year-old age group, and
offered as part of a summer program for academically gifted
students. The course features a fundamental emphasis on
project-based and group learning, and assumes no student
background in robotics or computer programming. For this
reason, it focuses on solving challenging problems using
simple robotic hardware and a novel high-level robot-control
library called FLAIL. Course topics cover a variety of topics,
and students are given the opportunity to explore a topic of
personal interest during a final project. Despite their limited
backgrounds, these final projects demonstrated substantial
understanding and achieved success in robotics topics rang-
ing from object recognition to game-playing algorithms.

Course Format This course was offered as part of the
Duke Talent Identification Program (TIP), a nationally-
recognized summer program for highly-gifted 7th through
10th grade students. The course is a three-week residential
program, and the students are in class with the instructors
for thirty-three hours a week. The students entered with a
wide variety of backgrounds, although none had robotics
experience. The vast majority also had no programming
experience, and many students had not covered mathemat-
ics beyond algebra. Course offerings have averaged around
twenty students.

The course also had a very limited budget of $86 per stu-
dent. This is particularly restrictive given the need for robots
and computers to control them.

The long blocks of uninterrupted class time, minimal stu-
dent experience, and strict hardware limitations provided the
framework on which we hung our course design.

The explicit goals of our course were to teach students
the basics of robotics, and expose them to a large number of

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robotics topics despite the students’ lack of background. The
implicit goals were closely related to the age and intelligence
of the students; we hoped to create an educational setting
that was both challenging and social, pushing students to be
engaged and develop the teamwork skills often lacking in
young students accustomed to intellectual superiority.

To address these goals, we devoted as much of the course
as possible to difficult projects performed in groups of two
or three which would be appropriate for an undergraduate
robotics course. The projects were made hard enough that
no student could complete them without help from other stu-
dents and their instructors, easing the fears of students un-
familiar with academic confusion. The projects were tied
together with a stated theme of steadily increasing robot au-
tonomy, which coincided nicely with increasing difficulty.

Hardware Any robotics course needs three hardware
components: sensors, effectors, and a computational plat-
form to control them. We used the iRobot Create, the Log-
itech QuickCam Pro 4000 USB camera, and assorted lap-
tops. The reliability and battery life of our hardware proved
extremely impressive. This course has now been taught six
times (twice by an instructor not involved in the develop-
ment of the course), for a total of more than 650 hours of
class time, and not one robot, camera, or laptop has failed.
These components were chosen for their low price and avail-
ability.

The use of generic webcams and laptops came as a sur-
prise to many students; they had clearly not realized that
such standard parts could be used in robotics applications.
Students were also pleasantly surprised to learn that the Cre-
ate is widely used in academic research. We believe that
this helped make it clear that, while a simple robotics plat-
form, the Create is also a serious robotics platform, not a
“toy robot.”

Software (FLAIL) Because this course is about robotics,
not programming, we elected to teach programming con-
cepts on an as-needed basis. For example, conditional state-
ments were introduced early, to support keyboard control
of a robot, while objects are the last programming con-
cept introduced, to support game trees. In order to spend
as little class time as possible on programming, it is nec-

17

Robotics Program: Enabling Intelligence through Middleware: Papers from the 2010 AAAI Workshop (WS-10-09)

essary to use a programming environment that is as simple
as possible. To this end, we selected the Python program-
ming language, and wrote our own software library, which
we call FLAIL (for FLyweight Actuator Interface Library).
FLAIL aims only to hide the technical details of robot con-
trol and camera interaction; reasoning and software design
are left entirely to the programmer. FLAIL consists of
six components, FLAILBot, which provides robot con-
trol, FLAILImage, which provides an interface to a three-
color-channel bitmap image, FLAILCam, which captures
images from our camera, FLAILKeys, which provides
unbuffered keyboard input, and FLAILSimulator and
SimulatedFLAILBot, which together provide a two-
dimensional graphical robot simulator.

Topics Covered Topics were covered roughly in order of
increasing robot autonomy. Students were first introduced
to FLAIL and robot control by creating a program for man-
ual control to compete in a robot soccer game. We then in-
troduced sensors, namely the Create’s odometer and bump
sensor. Students learned about the difficulties of sensors
through dead-reckoning and wall-following projects.

We then introduced cameras. We painted cinder blocks
with highly-saturated colors, and students programmed their
robots to segment images based on color in Hue-Saturation-
Value (HSV) space, and respond to this information by ram-
ming bricks of a given color. Students then were given
the color maze project, in which cinder blocks made up a
“maze” with different rooms, each of which is painted a dif-
ferent color. Students then autonomously navigate from one
end of the maze to the other.

Up to this point, student projects had focused on sim-
ple controllers operating in noisy but static environments.
To continue our theme of increasing autonomy, we invert
this, and focus on environments that are noise-free but
highly dynamic and adversarial. Specifically, we introduce
the perfect-information zero-sum games of Tic-Tac-Toe and
Connect Four. Students were given partial implementations
of these games, and completed the implementation and pro-
grammed a player based on minimax search. Tic-Tac-Toe
has a very shallow game tree, so fast, unbeatable players
were possible to implement. Connect Four’s game tree
is too deep for exhaustive search, requiring the introduc-
tion of a utility function and alpha-beta pruning. Student
groups designed and implemented their own utility func-
tion, and we finished the project with a Connect Four tourna-
ment. Although the game-playing projects took place off the
robots, the students needed no prompting to see the possible
robotics applications.

Student Projects Final projects required students to ex-
tend a topic from the course of interest to them, and then
formally present the results to the class and field questions.
Due to the breadth of the course, student projects took on a
range of topics, a few of which we detail here.

A common project was some variation on autonomous
robot soccer. The location of the camera varied, from
mounted on the robot to hanging from the ceiling for an

overhead view, but in all cases, the camera was used to iden-
tify the robot, the ball, and the goal, and autonomously plan
and perform a series of moves that would result in the scor-
ing of the goal. Also in the area of robotic planning, a group
used the simulator to build a maze, and constructed a graph
between random vertices on the map, where edges corre-
sponded to legal moves. Path planning could then be per-
formed by calculating the shortest path on the graph. Other
groups used the simulator to perform Monte Carlo localiza-
tion.

Students interested in cameras explored a range of com-
puter vision projects, from template-based object recogni-
tion to rangefinding using stereo vision or a laser pointer
mounted at an angle and a camera to detect the laser dot.
Other students continued on game theory through exploring
game playing through case based reasoning or methods of
ordering game tree exploration to increase the likelihood of
pruning.

Conclusion This course met our goals of student en-
gagement and growth using difficult, in-depth projects and
FLAIL, a novel software package that minimized the diffi-
culties of robot control for new programmers. It is impor-
tant to consider the possibility of moving the course to other
formats. By removing the later parts of the course (particu-
larly the programming-intensive game theory projects), the
course could be moved to a younger audience. FLAIL is
well suited for the uninitiated; if the students are capable
of understanding the very basics of programming, it is very
easy to elicit complex behavior from a robot. Conversely,
by presenting course topics more formally and in more de-
tail, the course could be adapted to a lecture-and-lab format
for undergraduate students. This course explored robotics by
gradually increasing robot autonomy; if this were continued,
more robotics topics would become relevant and interesting.
As topics are introduced more formally, the course moves
closer to a traditional “CS1 with robots.”

Students continually demonstrated a great interest in the
course, oftentimes preferring class to free time and rarely
expressing boredom despite the amount of class each day.
We believe the course’s robot-first approach and FLAIL can
be used as a blueprint for a introductory robotics course for
a range of student demographics, from early middle school
students to undergraduates.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

