
Action-Based Autonomous Grounding

Yoonsuck Choe
Department of Computer Science and Engineering

Texas A&M University
College Station, TX 77843-3112, USA

Abstract

When a new-born animal (agent) opens its eyes, what it
sees is a patchwork of light and dark patterns, the nat-
ural scene. What is perceived by the agent at this mo-
ment is based on the pattern of neural spikes in its brain.
Life-long learning begins with such a flood of spikes
in the brain. All knowledge and skills learned by the
agent are mediated by such spikes, thus it is critical to
understand what information these spikes convey and
how they can be used to generate meaningful behavior.
Here, we consider how agents can autonomously under-
stand the meaning of these spikes without direct refer-
ence to the stimulus. We find that this problem, the prob-
lem of grounding, is unsolvable if the agent is passively
perceiving, and that it can be solved only through self-
initiated action. Furthermore, we show that a simple cri-
terion, combined with standard reinforcement learning,
can help solve this problem. We will present simulation
results and discuss the implications of these results on
life-long learning.

Introduction

Consider the situation depicted in figure 1. What is shown in
these images? There is a black screen, and there are green
discs that appear at four discrete locations on the screen.
Beyond that, it is hard to even guess what these represent.
As unlikely as it seems, this is a typical grounding problem
(Harnad 1990), as we can see in the following.

(a) (b) (c) (d)

Figure 1: A Clueless Situation.

Although the task seems impossible, once the entire con-
text is shown, as in figure 2, now we can see what those
green discs (or as it turns out, “neural spikes”) represent:
They represent visual cortical neurons responding to four
different orientations.
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(a) (b) (c) (d)

Figure 2: The Clueless Situation, Explained.

The situation depicted above seem to indicate that ground-
ing is impossible when only the representations (green discs)
are given (as in figure 1). This point can be recast in the con-
text of the brain (figure 3): (a) The second neuron (internal
observer) is trying to understand the meaning of spike S it
receives (cf. figure 1). (b) An external observer has access to
both the spike S and the stimulus I (cf. figure 2).
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(a) Internal observer (b) External observer

Figure 3: Internal vs. External Observer.

A preliminary conclusion from the above would be that
there is no way the brain can attach meaning to the spikes
(e.g., when a spike fires in response of a diagonal input, it
would not know what orientation triggered the spike). How-
ever, this conclusion is contrary to our everyday experience
since we seem to understand the visual environment without
any problem based on just such neural spikes in the brain.

Why were we led to this false conclusion? What is miss-
ing from the above? The main ingredient missing from the
above (especially figure 3(a)) is the motor system and the
sensorimotor feedback. In this extended abstract, we will
show how the inclusion of action can help solve this seem-
ingly intractable grounding problem.

Conceptual Solution

First, we consider how, in principle, adding action can help
solve the grounding problem shown in the previous section.

We constructed a simple visuomotor agent as shown in
figure 4(a) below to investigate the grounding problem. The

56

Lifelong Learning: Papers from the 2011 AAAI Workshop (WS-11-15)



agent is situated in a visual environment (left), looking at a
small portion of the scene (I). The agent has four orientation
sensors (f ) which gives the encoded internal state (s). The
task is to use action (a) to figure out the meaning of the inter-
nal state s by learning a policy π : s → a. This turns out to
be a typical reinforcement learning problem. The only thing
we need to specify in addition to the above is the reward.
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(a) Visuomotor agent
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(b) Internal state invariance

Figure 4: Visuomotor Agent and Internal State Invari-
ance. Adapted from Choe, Yang, and Eng (2007).

It turns out that a simple criterion can help link spikes
to their meaning, in the form of action that carry the same
property as the encoded information in the spikes. Figure
4(b) shows how this works. At time t = 1, the agent is ini-
tially looking at a small part of the diagonal line, and as a
result the second unit in its internal state is activated. In the
following steps (t = 2, t = 3), the agent moves diagonally.
However, due to the configuration of the environment and
the agent’s sensors, the internal state remains invariant (i.e.,
the second unit is activated). This is strange since movement
is expected to lead to a change in the internal state. Here, we
can see an interesting correspondence between the invariant
state (second unit) and the diagonal movement: The prop-
erty encoded by the second unit (45o orientation) and the
property of the movement (450 direction) are the same!

From this simple observation, we can formulate an ob-
jective function: given the task above, we can ask the agent
to generate action that maximizes invariance in its internal
state, from moment to moment. In the following, we will
show how this objective can effectively solve the grounding
problem.

Experiments and Results

We consider a simple reinforcement learning problem,
where the task is to learn the reward table R(s, a), repre-
senting P (a|s), to be followed by an optimal policy, where
s is the sensory state and a is the action. In an ideal case, the
reward table would look like figure 5 below.

We used a simple reinforcement learning algorithm sim-
ilar to SARSA to estimate the reward table R(s, a) (Choe,

R(s ,a )
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Figure 5: Ideal and Learned Reward Tables. Adapted
from Choe, Yang, and Eng (2007).

Yang, and Eng 2007), using synthetic and natural images
(e.g., see figure 6(a)). The reward was simply the dot prod-
uct between the current and the previous sensor response
vectors. The learned reward tables are close to the ideal case
(figure 5(b)&(c)), which embodies the grounding (synthetic
image experiment had 4, and natural image 8 orientation
sensors [rows]; columns represent gaze direction). The gaze
trajectory based on the learned reward table reveals the un-
derlying structure in the visual scene (figure 6(c)).

(a) Input (b) Initial (c) Final

Figure 6: Gaze Trajectories. Color in (b)&(c) indicates flow
of time. Adapted from Choe, Yang, and Eng (2007).

Discussion and Conclusion

In this extended abstract, we have shown how action plays
a key role in grounding, and identified a simple yet power-
ful learning criterion: internal state invariance. An important
implication of this work is that an agent’s “understanding” of
the environment critically depends on its motor primitives.
This suggests an important requirement for life-long learn-
ing: flexible behavior and large motor primitive repertoire.
Furthermore, tool use can greatly expand the range of be-
havior, so tool use can also contribute to understanding and
life-long learning.
Acknowledgments: This work is an extended summary of
Choe, Yang, and Eng (2007).
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