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Introduction
The field of robotics is increasingly moving toward applica-
tions that involve unstructured human environments. This
domain is challenging from a learning perspective, since
subsequent observations are dependent and the environment
is typically non-stationary. This non-stationarity is not lim-
ited to the external environment, as internal sensorimotor
relationships may be subject to change as well. Specific
causes include environmental influences (e.g., temperature)
and wear-and-tear, as well as self-initiated changes (e.g.,
changing dynamics due to tool-use).

Successful modeling of sensorimotor relationships there-
fore necessitates an open-ended learning process that con-
tinuously updates existing models when novel observations
become available. Adaptation and prediction have to take
place while the robot is operating in the environment and
should be time-efficient to ensure responsive behavior. The
implied requirements of incremental updates and O(1) per-
sample time complexity, however, are not well supported
by current machine learning methods. For instance, kernel
methods are “impaired” by formulating the solution in terms
of a kernel expansion that grows linearly with the number of
training samples. Even algorithms targeted specifically for
real-time, incremental robotic learning, such as LWPR (Vi-
jayakumar, D’souza, and Schaal 2005), are characterized by
steadily increasing computational requirements as the num-
ber of training samples grows ad infinitum. Furthermore,
this latter method generally requires a large amount of train-
ing samples and manual hyperparameter tuning to attain sat-
isfactory performance.

Incremental Learning with Random Features
Several approaches have been proposed to combine the
desired learning performance of kernel methods with in-
cremental updates and bounded computational complexity.
Typically, these involve an additional procedure that actively
removes samples from the kernel expansion once a prede-
fined budget has been reached (Nguyen-Tuong, Seeger, and
Peters 2009, among others). Though effective at bounding
the computational complexity, this removal procedure may
require costly bookkeeping and invalidates existing theoret-
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ical results on learning with kernel methods. More recently,
Gijsberts and Metta presented promising results using ridge
regression combined with a numerically stable update rou-
tine (Gijsberts and Metta 2011). Moreover, non-linearity
is achieved by approximating (shift invariant) kernel func-
tions using a finite dimensional feature mapping composed
of random projections (Rahimi and Recht 2008). The ac-
curacy of this kernel approximation can be improved ar-
bitrarily by increasing the number of projections, albeit at
increased computational cost. Furthermore, since this fea-
ture mapping can be considered a kernel in its own right,
the method is supported by existing theoretical results on
learning with (kernel) ridge regression (Pan and Xiao 2009;
Zhdanov and Kalnishkan 2010, for example).

Here we extend this approach by applying the kernel ap-
proximation and update routine in the context of Bayesian
linear regression. In effect, the resulting method can be con-
sidered an incremental variant of the Sparse Spectrum GPR
for batch learning (Lázaro-Gredilla et al. 2010). Advan-
tages of this alternative method over the earlier ridge regres-
sion variant are the availability of a predictive distribution
and convenient hyperparameter optimization using log like-
lihood maximization. These advantages are acquired at the
cost of slightly increased computational requirements and a
Gaussianity assumption on the signal noise.

Results
The incremental version of SSGPR is evaluated on the task
of learning inverse manipulator dynamics, using nearly half
an hour of samples collected from the iCub humanoid (Gi-
jsberts and Metta 2011). For this experiment, the feature
mapping is initialized to approximate an anisotropic Gaus-
sian kernel using 50 random projections. The resulting
method is compared with incremental LWPR, Gaussian Pro-
cess Regression (GPR) trained in batch (Rasmussen and
Williams 2005), and an analytical Rigid Body Dynamics
(RBD) model (Siciliano and Khatib 2008). The initial 15000
samples are used for batch training in case of GPR, and
for hyperparameter optimization and calibration in case of
incremental SSGPR, LWPR, and RBD. Both incremental
learning methods therefore start training during evaluation
on the test samples.

Fig. 1 demonstrates how the average prediction error de-
velops as the number of test samples increases. Interestingly,

58

Lifelong Learning: Papers from the 2011 AAAI Workshop (WS-11-15)



0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
0.00

0.05

0.10

# Samples

A
ve

ra
ge

nM
SE

GPR LWPR SSGPR50 RBD

(a) Fx

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
0.00

0.05

0.10

# Samples

A
ve

ra
ge

nM
SE

GPR LWPR SSGPR50 RBD

(b) τx

Figure 1: Convergence of the average one-step-ahead prediction error of the considered methods when predicting the force F
and torque τ in the x-axis of the sensor reference frame. The results for SSGPR50 are the average error over 25 randomized
runs. The standard deviation over the various runs is negligible and error bars are therefore omitted for clarity.
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Figure 2: Sample time with respect to the number of training
samples for the force components of the iCub dataset. The
results for GPR and RBD only include the prediction time,
whereas the timing for LWPR and SSGPR also includes the
model update. Note the log-scale on the y-axis.

GPR and RBD exhibit decreasing accuracy when predict-
ing forces, which can be contributed to temperature induced
sensor drift. Incremental SSGPR is notably less affected by
this drift, since continuous updates to its model help to com-
pensate for these gradual changes. Furthermore, the results
demonstrate that 50 random features are sufficient to out-
perform the competing methods and to match the full GPR
when predicting torques. Although LWPR seemingly han-
dles the sensor drift well, its performance is significantly in-
ferior and characterized by slow convergence. In addition,
the corresponding timing results (cf. Fig. 2) confirm its in-
creasing computational requirements. This renders LWPR
unsuitable for applications requiring open-ended learning or
involving hard real-time constraints. The per-sample up-
date time of incremental SSGPR remains constant over time,
as per design, and even approaches the efficient analytical
RBD model. This demonstrates that the proposed method
achieves excellent generalization performance while requir-
ing a bounded and predictable time to process a sample.
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