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Abstract

In Hypertable ranges of table data are stored and ac-
cessed on different nodes and allows for flexible man-
agement of the underlying hardware. Overall perfor-
mance is sensitive to the balance of range load across
the cluster. The project developers aim to create a sim-
ple interface to allow researchers to design experimen-
tal load balancing strategies that incorporate machine
learning and optimization. This paper specifies the load
balancing problem and introduces it as a challenge
problem for AI and machine learning.

Introduction
Hypertable is an open source, distributed, column oriented
database, designed to run on clusters of tens, hundreds, or
thousands of nodes (Judd 2007). The project is closely mod-
eled after Bigtable, the proprietary database system devel-
oped by Google. Bigtable has been a highly visible compo-
nent of Google’s success as a company (Chang et al. 2006)
and has increased the popularity of distributed datastores.
The essential operation of distributed datastores is writing
new data to a cluster of servers managing redundant parti-
tions of the table space supported by the system. The devel-
opers of Hypertable have created a flexible interface allow-
ing for customized implementations of load balancing for
Hypertable.1.

Load Balancing for Hypertable
The current range allocation algorithm is round robin. Load
balancing is performed after new range servers are added,
when a range splits, and periodically according to cluster
policy. The objective of load balancing for range servers in
Hypertable is to ensure that operational resources, as mea-
sured by CPU load average (loadavg), are balanced across
the cluster. CPU load average is reported over 1-, 5-, and 15-
minute intervals (Walker 2006) and has been investigated as
a metric for evaluating dynamic load balancing (Ferrari and
Zhou 1987). It is an exponential moving average of the num-
ber of processes that are running (or runnable) per CPU.2
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1http://code.google.com/p/hypertable/wiki/LoadBalancing
2http://linuxtechsupport.blogspot.com/2008/10/what-exactly-

is-load-average.html

Basic Balancer

As an illustration we introduce the basic load balancing al-
gorithm (basic balancer) that serves as a baseline reference
implementation. The algorithm is described on the project
wiki3 and is designed to reduce the dispersion of loadavg
across the set of range servers. The basic balancer cycles
through each server in descending order of loadavg and
moves ranges from the highest to the lowest as long at
that move reduces that servers estimated deviation from the
mean loadavg for the cluster. It is estimated since the
precise effects of removing the range from one server and
adding to another are uncertain.

Estimating a Range’s Effect on Load Average Clearly,
an algorithm for balancing loadavg needs to estimate the
effect of a specific range on a given range server in terms
of loadavg. For the basic balancer a simple loading factor
computed per server is used. For each range a heuristic esti-
mate (loadestimate) of its contribution to loadavg is
computed as:

2 · bytes written/s+ disk bytes read/s

where bytes written/s is the raw number of bytes
that get written to a range per second. It is multiplied by two
because there are at least two writes for each piece of data
written to the database.4

For read activity on the range disk bytes read/s is
used which is a measure of uncompressed bytes transferred
from disk during query execution. It captures load effects of
different compression schemes configurable for each table.
This is done to normalize the number of bytes read in rela-
tion to bytes written since the bytes get compressed prior to
being written to disk.

Next, a loading factor for each server i
(loadavg per loadestimate) is calculated as:

loadavgi∑
j=1...ni

loadestimatei,j

3http://code.google.com/p/hypertable/wiki/LoadBalancing
4First a write for the commit log and then one for a CellStore.

Further, there is the possibility of additional load due to com-
pactions and ambient load due to distributed file system writes for
copies. For full details see (Judd 2011).
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where ni is the number of ranges at server i and
loadestimatei,j is the loadestimate of range j on
server i. Thus, the approximate change to loadavg is de-
terimined by multiplying a range’s loadestimate by the
assigned server’s loadavg per loadestimate.

Machine Learned Estimates for a Range’s Effect We
expect that more accurate estimates, using specific proper-
ties of the given range and range server combination would
improve balancer performance. One challenge for research
would be to construct machine learned models for estimat-
ing the effects of adding or removing a specified range from
a particular range server based on properties of the range
and recent operational statistics of the range server. A com-
prehensive survey of machine learning applications to clus-
ter problems such as estimating system work loads can be
found in (Bodik 2010).

Statistics usable as features in a machine learned
models or other balancer inputs or are stored in the
sys/RS METRICS table. Currently, Hypertable collects
the following application level stats both on a per range and
per table:

• range count

• scans or updates per second

• cells read or written per second

• bytes read per second

• disk bytes read per second (disk bytes read/s)

• bytes written per second (bytes written/s)

• disk used

• memory used

For the range servers, statistics including CPU load av-
erage, are collected via Hyperic SIGAR5 and used as in-
puts and feedback for load balancing operations. For ex-
ample, SIGAR reports approximately 50 different measure-
ments (e.g. load average, CPU, memory, network utilization,
disk inputs/outputs per second (IOPS), bytes read/written
per second, paging statistics, etc.). Stats collected for each
range server include, but are not limited to: syncs per sec-
ond, block cache hit%, query cache hit%. In addition, gen-
eral server properties are known including amount of RAM,
number of CPU cores, and disk capacity.

Optimizing the Load Balancing Plan

Load balancing has been studied from a variety of stand-
points (Tantawi and Towsley 1985; Mehra 1992; Parent, Ver-
beeck, and Lemeire 2002; Parent et al. 2004; Keslassy et al.
2005; Mcdonald and Turner 2000). Initially, it is assumed
that optimization will be batch oriented producing a balance
plan as output. The balance plan is an assignment of sub-
sets of ranges to be moved to a subset of the available range
servers.

5http://www.hyperic.com/products/sigar.html

Objective Function for Load Balancing A variety of ob-
jective functions and online learning methodologies have
been described for load balancing. An exhaustive survey
is well outside the scope of this paper but a small sam-
pling of ideas are discussed in (Mehra and Wah 1993;
Westbrook 1995). For Hypertable, one simple objective for
the load balancer, and one consistent with the algorithm out-
lined for the basic balancer, is the sum of absolute devia-
tions of the loadavg as:

Deviation(loadavg) =
∑

i=1...N

∣∣loadavgi − loadavg
∣∣

for N range servers where loadavg is the sample mean
across the cluster. Alternatively, we can consider the range
defined as:

Range(loadavg) = max(loadavg)−min(loadavg)

Constraints for Load Balancing Constraints for allow-
able range moves should be considered. Rules for restrict-
ing range assignments based on properties of either range or
range servers should be supported. Costs for range moves
could be estimated and factored into the assignments as well
as constraints on the total number of moves that can be
made.

Test Load and Experiments Experimental test loads with
a variety of profiles is under development and is located on
the project web site.6 Some of the load is drawn from real
time streaming services such as twitter. Twitter stream data
is being actively researched for a variety of purposes related
to community mining (Wu et al. 2011) and scalability chal-
lenges (Eriksen 2010) of the sort addressed by Hypertable.
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