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Abstract

The growing use of autonomous agents in practice may re-
quire agents to cooperate as a team in situations where they
have limited prior knowledge about one another, cannot com-
municate directly, or do not share the same world models.
These situations raise the need to design ad hoc team mem-
bers, i.e., agents that will be able to cooperate without co-
ordination in order to reach an optimal team behavior. This
paper considers problem of leading N -agent teams by a sin-
gle agent toward their optimal joint utility, where the agents
compute their next actions based only on their most recent
observations of their teammates’ actions. We show that com-
pared to previous results in two-agent teams, in larger teams
the agent might not be able to lead the team to the action
with maximal joint utility. In these cases, the agent’s optimal
strategy leads the team to the best possible reachable cycle
of joint actions. We describe a graphical model of the prob-
lem and a polynomial time algorithm for solving it. We then
consider the problem of leading teams where the agents’ base
their actions on a longer history of past observations, show-
ing that the an upper bound computation time exponential in
the memory size is very likely to be tight.

Introduction
Teams of agents have been studied for more than two
decades, where generally the assumption is that the agents
can coordinate their actions to increase the team’s perfor-
mance. The growing popularity of agents in domains such
as e-commerce, has raised the need for cooperation between
agents that are not necessarily programmed similarly, and
might not have the same communication protocols or world
models. Nevertheless, these agents might be required to per-
form as a coordinated team. When designing such systems,
one cannot assume the team members engage in a known
team strategy, but each agent must adjust to the current cir-
cumstances while adopting a strategy that aims to optimize
the team’s utility. Such systems are called Ad-Hoc Teams.

In many cases, such as robotic teamwork, it might be im-
possible to change the design of existing agents on the team.
This work attempts to provide theoretical results (model and
solution, and bound on existence of a solution) for the pos-
sible influence of a new added agent on the team perfor-
mance. Consider the case where several robots are deployed
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on Mars; you designed them, but once they are there - you
cannot re-code them. Suppose that as time passes, you have
more knowledge about the world. Will it be worthwhile to
send a new robot to change the team behavior to a new,
improved, one? If so - how should it do so? These ques-
tions motivate our research, and this paper makes progress
towards answering them.

In this paper we consider the problem of leading a team to
the optimal joint action. In this problem, the team members
do not communicate explicitly, but are assumed to choose
their actions based on their observations of their teammates’
previous actions (one or more), i.e., the agents behave as
best response agents1. The ultimate goal is to have all team
members act in a way that will maximize the joint utility
of the team. Assume we design a team member that joins
the team, the ad hoc team member. Our goal is, therefore,
to determine the optimal strategy for the ad hoc team mem-
ber such that that it will lead the team to their optimal joint
action while minimizing the system’s cost while doing so.

This problem was introduced by Stone, Kaminka and
Rosenschein (2010) for systems of two agents: one ad hoc
agent, and one best response agent. They describe an al-
gorithm for determining the optimal strategy for the ad hoc
agent that leads, in minimal cost, the best response agent to
perform the action yielding optimal joint utility.

In this paper we consider the more general problem of
leading N -agent teams, N ≥ 2, toward their optimal joint
utility. In such systems, the possible influence of one agent
in the team is relatively limited compared to the two-agent
teams. As a result, we show that in N -agent teams, the op-
timal joint utility might not be reachable, regardless of the
actions of our agent. In such cases, our agent’s optimal strat-
egy is to lead the team to the best possible reachable joint
utility, with minimal cost.

In order to find the optimal strategy for the ad hoc team
player, we describe a graphical model of the possible joint
set of actions integrating the possible transitions between the
system’s states (agents’ joint action), and the resulting costs
of those transitions. Using this model, we first determine the
set of joint actions resulting in maximal joint utility, and find

1We consider best response agents for simplicity, however our
results can equally be applied to the more general case of agents
that base their decisions on a fixed history window of the ad hoc
agents’ past actions, rather than on their own previous actions.
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the lowest cost path from the initial joint action of the agents
to this optimal set of joint actions.

We then consider the problem of leading best-response
agents with memory size greater than one. In such cases,
the teammates compute their best response to the maximum
likelihood distribution corresponding to the last joint actions
they observed (in the size of their memory). We discuss the
influence of the memory size on the time complexity of de-
termining the optimal strategy for the ad hoc team member.
Specifically, the upper bound on the time complexity of our
suggested algorithm is exponential in the memory size. Un-
fortunately, we show that this upper bound is very likely to
be tight, based on the size of the state space and the fact that
determining the length of the optimal path even in the simple
case of two agents and memory size 2 is NP-Hard.

Problem Description
We consider the problem of leading a team of best response
players by one ad hoc team member towards the optimal
joint utility of the team. In this section we describe the gen-
eral problem, as well as notations that will be used through-
out the paper.

The problem of finding a policy for leading team mem-
bers to the optimal joint utility was introduced in (Stone,
Kaminka, and Rosenschein 2010) for a team of two agents:
A and B, where agent A is the ad hoc agent and agent B
is the best response agent. Agent A was designed to lead
agent B to perform an action that will result in the optimal
joint utility, denoted by m∗. This is done without using ex-
plicit communication or prior coordination, where agent B
chooses to perform an action that maximizes the joint utility
based on its observation of agent A’s previous action (but
with both players having knowledge of the game).

The assumption is that agent B’s behavior is known to
agent A, but is fixed and unchangeable. This represents one
of the simplest cases of ad hoc teamwork, where there is
no uncertainty about behaviors. Nevertheless, it poses some
interesting challenges, as shown in this paper.

Agent A has x possible actions {a0, . . . , ax−1}, and agent
B has y possible actions {b0, . . . , by−1}. The team’s utility
is represented by an x× y payoff matrix M , where an entry
M(i, j) in the matrix is the joint utility when A performs ac-
tion ai and B performs action bj . The cost of each possible
joint action (ai, bj), 0 ≤ i ≤ x− 1, 0 ≤ j ≤ y − 1, denoted
by C(ai, bj), is defined as m∗ − M(i, j), i.e., the distance
from the optimal joint utility. The system is initialized in the
joint action (a0, b0).

It can be assumed, without loss of generality, that m∗
is the joint utility obtained when A performs action ax−1

and B performs by−1. Therefore m∗ is necessarily reach-
able from (a0, b0) in at most two stages: A picks ax−1

and B will adjust in the next stage and choose action by−1,
thus a possible sequence to the optimal joint action m∗ is
〈(a0, b0), (ax−1, b0), (ax−1, by−1)〉, after which A and B
will continue performing actions ax−1 and by−1 (respec-
tively). However, this might not be the only possible se-
quence, and moreover - there could be a sequence of joint
actions leading to m∗ that has lower cost. The question an-
swered by Stone et al. (2010) was, therefore, how to reach

m∗ with minimal cost. They describe a dynamic program-
ming algorithm for finding the optimal solution in polyno-
mial time. Their solution is based on the knowledge of the
longest possible optimal sequence, bounding the depth of
the recursive algorithm.

In this paper we consider the more general case of leading
N -agent teams, N ≥ 2, by one ad hoc team player. We do so
by first examining the problem of leading three-agent teams,
and then describe the generalization to N agent teams.

The three-agent team consists of agent A - the ad hoc
team member, and the best response agents B and C. The
set of actions available for the agents is {a0, . . . , ax−1},
{b0, . . . , by−1} and {c0, . . . , cz−1} for agents A, B, and C,
respectively. The payoff matrix of the team is a 3-D matrix
M , that can be conveniently written as x matrices of size
y × z, M0, . . . ,Mx−1 (see Figure 1), where entry (bi, cj)
in matrix Mk, denoted by Mk(i, j), (0 ≤ k ≤ x − 1,
0 ≤ i ≤ y − 1, 0 ≤ j ≤ z − 1), is the payoff of the system
when agent A performs action ak, B performs bi and C per-
forms cj . Denote the maximal joint payoff in the system by
m∗, and assume, without loss of generality, that the agents
initially perform actions (a0, b0, c0).

Similarly to the two-agent case, the agents do not coordi-
nate explicitly, but agents B and C are assumed to choose
their next move according to their current observation of
their teammates’ actions. Therefore the next action of agent
B (denoted by BRB) is based on its current observation of
the actions of agents A and C, and similarly the next action
of C (denoted by BRC) is based on the actions of A and
B. Formally, BRB(ai, ck) = argmax0≤j≤y−1{Mi(j, k)}
(similarly for BRC). Therefore if the current actions of
the agents are (ai, bj , ck), then the next joint action would
be (ai′ , BRB(ai, ck), BRC(ai, bj)) for 0 ≤ i, i′ ≤ x − 1,
0 ≤ j ≤ y − 1 and 0 ≤ k ≤ z − 1.
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Figure 1: An example for
a case in which m∗ =
(a1, b1, c1) is unreachable.

Compared to the
two-player game, in
the three-agent team
the control of agent A
on the game is rela-
tively limited. Specifi-
cally, there are cases in
which m∗ will remain
unreachable, regard-
less of the actions of

agent A. An example for such a case is given in Figure 1.
In this example, x = y = z = 2. According to these payoff
matrices, BRB(ai, c0) = b0 BRC(ai, b0) = c0, i ∈ {0, 1},
thus agents B and C will continue to choose actions (b0, c0)
in both matrices, and A will not be able to lead them to
joint utility of m∗ = M1(1, 1) = 20. Therefore the goal of
agent A is to lead the team to the best possible reachable
joint action or cycle of joint actions. In this example, A will
choose action a1, leading to the maximal possible payoff
of 8, and all agent will continue choosing the same action
yielding maximal possible joint utility.

Definition A Steady Cycle is a sequence of t joint actions
s0, s1, . . . , st−1 such that if sl = (ai, bj , ck), then sl+1 =
(ai′ , BRB(ai, ck), BRC(ai, bj)), (0 ≤ l ≤ t−1, 0 ≤ i; i′ ≤
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x − 1, 0 ≤ j ≤ y − 1, 0 ≤ k ≤ z − 1), and st = s0, i.e.,
the sequence is cyclic. The Optimal Steady Cycle, denoted
by OSC, is a steady cycle with minimal average cost, i.e,
1/t×∑t

i=1 C(si) is minimal.

Note that if m∗ is reachable, the optimal steady cycle con-
sists of only the joint action yielding payoff m∗.

Leading a three-agent team

In this section we examine the problem of leading a three-
agent team. We describe a graphical model for representing
the system, and a polynomial time algorithm for determining
the optimal possible joint action (cycle) and how to reach it
with minimal cost to the team.

Problem Definition

The three-player team consists of three agents: agent A, our
designed ad-hoc team player, and agents B and C, which
are the original team players.
We define the 3-Player Lead to Best Response Problem
(3LBR) as follows.
Given a three-agent team, A,B,C, where agent A is an ad-
hoc team player and agents B and C are best response play-
ers, and a 3-D payoff matrix representing the team payoff
for every joint action of the agents, determine the set of ac-
tions of agent A that will lead the team to the optimal steady
cycle reachable from (a0, b0, c0) in minimal cost.

Graphical Representation

In this section we describe a graphical model of the state
space, used to find an optimal solution to the 3LBR problem.
We create a graph G = (V,E), where V includes of all
possible joint actions, i.e., each vertex vijk ∈ V corresponds
to a set of joint actions (ai, bj , ck) (0 ≤ i ≤ x− 1, 0 ≤ j ≤
y−1, 0 ≤ i ≤ z−1). The directed edges in E are defined as
follows: an edge e = (vijk, vi′j′k′) ∈ E ∀i′, 0 ≤ i′ ≤ x−1,
if j′ = BRB(ai, ck) and k′ = BRC(ai, bj). In words, an
edge is added where it is possible to move from one set of
joint actions to the other—either by A repeating the same
action (ai = ai′ ) or by it switching to another action ai �=
ai′ . The cost of an edge e = (vijk, vi′j′k′) is set to m∗ −
Mi′(b

′
j , c

′
k). The total number of vertices in G is xyz, and

the number of edges is x× |V | = x2yz.
Figure 2 illustrates a set of payoff matrices and its cor-

responding graphical representation. In this case, m∗ is
reachable, hence the optimal steady cycle is of size t =
1 and includes only v111. The optimal path to the op-
timal steady cycle is the shortest path (corresponding to
the path with lowest cost) between v000 to v111, which is
v000, v101, v111, meaning that the minimal cost sequence is
〈(a0, b0, c0), (a1, b0, c1), (a1, b1, c1)〉 with a total minimal
cost of 21 (there is a “startup cost” of 15 for the first play,
that is added to all paths from vertex 000, as indicated by the
incoming edge to that vertex). The dashed lines represent the
transitions which are determined by A’s choices, leading to
a change in Mi. The solid lines represent the outcome if A
did not change its action.
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Figure 2: An example for the graphical representation of the
state transition. On the left - the representation of the the
payoff matrix from Figure 1 where m∗ is unreachable.

Algorithm for Solving the 3LBR Problem

We divide the solution to the 3LBR problem into two stages:
1. Find the optimal reachable steady cycle.
2. Find the sequence of actions for agent A that will lead the

team to the optimal steady cycle with minimal cost.
In order to find the optimal reachable steady cycle, we first

remove all vertices that do not belong to the connected com-
ponent that includes v000. This can be done by a simple BFS
tour starting at v000 (linear in the graph size). Finding the
optimal steady cycle corresponds to finding the Minimum
Cycle Mean (introduced by (Karp 1978)), that can be com-
puted using dynamic programming in time O(|V | × |E|) =
O(x3y2z2).

Finding the sequence of actions taken by agent A that
will lead the team to the optimal steady cycle with minimal
cost is equivalent to finding the shortest path from v000 to
any vertex in the cycle yielding the minimum cycle mean of
G. Recall that the number of vertices in the cycle yielding
the minimum cycle mean of G is denoted by t. Therefore
finding the shortest path from v000 to one of the vertices of
that cycle can be done by Dijkstra’s algorithm, resulting in
time complexity of O(t|E| log |V |) = O(tx2yz log(xyz)).
The total time complexity of the algorithm is, therefore,
O(tx2yz log(xyz) + x3y2z2).

Comparing the time complexity of our algorithm to the
algorithm presented by Stone et al. (2010) for two-player
games, we note that finding the optimal sequence of joint
actions for a two-player game is a special case of the three-
player game in which z = 1 (thus is irrelevant) and the
optimal reachable steady cycle is known to be v110. Thus
the time complexity of finding the optimal sequence using
our algorithm is O(x2y log(xy)), compared to O(x2y) of
the algorithm described in Stone et al. (2010). However,
as they have shown, there is no point in returning to a set
of joint actions in this scenario, thus while constructing the
graph, edges closing a cycle will not be added, yielding a
directed acyclic graph (DAG). In DAGs, the shortest path
can be found in O(|E| + |V |) (using topological ordering),
therefore the time complexity is similar to the one described
in (Stone, Kaminka, and Rosenschein 2010), i.e., O(x2y).

Leading N -agent teams

Generalizing 3LBR, we define the N -Player Lead to Best
Response Problem (NLBR) as follows.
Let {a0, . . . , aN−1} be a team of N agents, where agent a0
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Algorithm 1 Algorithm Lead3Team(M)

1: Create graph G = (V,E) as follows
2: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do
3: Add vi,j,k to V
4: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do
5: for 0 ≤ i′ ≤ x− 1 do
6: Add e = (vi,j,k, vi′,BRB(i,k),BRC(i,j)) to E
7: Set w(e) = m∗ −M(i′, BRB(i, k), BRC(i, j))
8: Compute G′ ⊆ G by a BFS tour on G starting from v0,0,0
9: Compute the optimal steady cycle OSC ⊆ G′ =

{v0, . . . , vk−1} (Minimum Cycle Mean)
10: P ← argmin0≤i<k {Shortest path from v0,0,0 to vi ∈ OSC}

is an ad-hoc team player. The set of actions for each team
member ai (0 ≤ i ≤ N−1) is {ai0, ai1, . . . , airi}, and we are
given an N -D payoff matrix M representing the team payoff
for every combination of actions of the agents. Determine
the set of actions of agent a0 that will lead the team to the
optimal steady cycle reachable from (a00, a

1
0, . . . , a

N−1
0 ) in

minimal cost.
In order to generalize the solution to the 3LBR problem

to the NLBR problem, it is necessary to define its graphi-
cal representation. Once the graphical model is set, finding
the optimal solution to the problem becomes similar to the
three-agent case, i.e., we find the optimal steady cycle, then
we find the shortest path to that cycle. The main difference
from the three-agent case lies, therefore, in the creation of
the graph, which in turn affects the time complexity.

The graph G = (V,E) is built similarly to the 3-player
game, where vi0i1...iN−1

∈ V for each set of joint actions
(a0i0 , a

1
i1
, . . . , aN−1

iN−1
) corresponding to an entry in the payoff

matrix Mi0 , and e = (vi0i1...iN−1
, vi′0i′1...i′N−1

) ∈ E if ∀1 ≤
j ≤ N − 1, aji′j = BRj(a

0
ii
, . . . , aj−1

ij−1
, aj+1

ij+1
, . . . , aN−1

iN−1
),

∀0 ≤ i′ ≤ r0 − 1 .
The number of vertices in G is

∏N−1
i=0 ri, and the num-

ber of edges is r0
∏N−1

i=0 ri, leading to a time complexity
of O(tr20

∏N−1
i=1 ri log(

∏N−1
i=0 ri) + r0

∏N−1
i=0 r2i ) for solv-

ing the NLBR problem (where t is the length of the optimal
steady cycle).

Leading a team with memory> 1

Until this point, we assumed that the teammates optimize
their choices based on their most recent observation (best re-
sponse). We now consider the case in which the team mem-
bers have memory greater than one, i.e., each team member
computes its best response to the maximum likelihood dis-
tribution corresponding to the last mem joint actions it ob-
served. We describe the analysis for three-agent teams; the
solution for the general N -agent team follows directly.

Denote the number of times agent A, B and C performed
action ai, bj and ck during the previous set of mem joint
actions by Na

i , N b
j and N c

k , correspondingly. Formally, for
a three-agent team, the best response of agents B and C are
defined (BRB and BRC , correspondingly) as follows:
BRB = argmax{0≤l≤y−1}{

∑x−1
i=0

Na
i

mem

∑z−1
k=0

Nc
k

mem (ai, bl, ck)}

(BRC is defined similarly). Denote the best response of
agent B (C) based on the last observed mem sets of
joint actions s1, . . . , smem by BRB(s1, . . . , smem )
(BRC(s1, . . . , smem )).

The graph representation G = (v, e) in case mem >
1 is as follows. A vertex v ∈ V represents a global
state which includes a sequence of mem consecutively
executed joint actions, {s0, . . . , smem}. An edge e =
(v, u) ∈ E exists from a vertex v = {s0, . . . , smem}
to vertex u = {s′0, . . . , s′mem} if ∀0 ≤ l ≤ mem −
2; ∀0 ≤ i ≤ x − 1, s′l = sl+1, s′mem =
{ai, BRB(s0, . . . , smem ), BRC(s0, . . . , smem )}.

As shown by Stone et al. (2010), even if m∗ was played
once, it does not necessarily mean that the system will stay
there. Specifically, it could be the case that the team was
lead to m∗, however the next best response of some agent
(one or more) would be to switch actions. This was denoted
as unstable states. Assume the joint action yielding m∗ is
(a∗, b∗, c∗). As a result, we define the terminal vertex of
the system to be 〈(a∗, b∗, c∗), . . . , (a∗, b∗, c∗)〉 (mem times).
Clearly, this vertex is stable.

On the time complexity of handling high mem
Finding the optimal steady cycle and the optimal path to that
cycle in case the team members have memory size greater
than one can be computed similarly to the solution to the
3LBR and the NLBR problems (Algorithm Lead3Team).
In order to determine the time complexity of reaching an
optimal solution, it is necessary to calculate the size of the
graph representation, i.e., |V | and |E|. The number of com-
binations of mem sets of joint actions is |V |mem . However,
not all combinations of sets of joint actions are feasible (the
system cannot reach every vertex from every vertex, but only
x vertices from each vertex), hence the upper bound on the
number of vertices is xyz × xmem−1, i.e., xmemyz (ex-
ponential in mem). The number of edges from each vertex
remains x, hence the total number of edges is xmem+1yz.

This provides an upper bound on the time complexity of
reaching a solution with mem ≥ 2. However, we would
like to examine whether this bound is tight or not, i.e., can
we guarantee that the time complexity will practically be
lower than that? We do so by pursuing two different di-
rections. First, we check whether there is a connection be-
tween the relevant graph size (connected component that in-
cludes the initial vertex) with teammates having memory
of size mem − 1 and the relevant graph size when their
memory is mem . For example, if the connected compo-
nent only got smaller as memory increased, then we could
bound the graph size by the size of the connected component
when mem=1. Second, we check whether we can efficiently
bound the possible length of the optimal path from the ini-
tial joint action to the optimal (cycle of) joint action(s). If
so, that would allow us to restrict the construction of our
state space to states within that maximal length from the ini-
tial state. Unfortunately, the investigations in both directions
are not promising. We show that there is no connection be-
tween the size of the relevant connected component as the
memory size grows (it could increase or decrease). We also
show that even in the simplest case of N = 2 and mem = 2
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determining the maximal size of an optimal path from v0,0
to m∗ is NP-Hard.

Graph size as memory size changes We investigated the
influence of the number of vertices in the connected compo-
nent in case mem = 1 to the number of components when
mem = 2 in order to determine a tight bound on the num-
ber of vertices we need to explore as the memory grows.
Unfortunately, we have shown that there is no relation be-
tween the number of vertices in the connected components
between different memory sizes. In this section, we describe
two opposite cases: one in which the connected component
grows, and one in which it becomes smaller.

We show, by the following example, that the connected
component originating at v = (0, 0, 0) with mem = 1
can grow as mem grows to include vertices corresponding
to joint actions that were unreachable with smaller mem-
ory size. Moreover, Figure 3 shows a case in which with
mem = 1 m∗ is unreachable, yet with mem = 2 it be-
comes reachable. On the other hand, as shown in Figure 4,
the number of vertices may decrease, possibly causing m∗
to become unreachable.

These two examples set a tight bound on the number of
vertices that need to be explored as memory grows, i.e., it is
not sufficient to explore only the main connected component
of mem = 1, but it is necessary to explore the entire main
connected component in the current memory model.
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Figure 3: An example for a case where m∗ was unreachable
for mem = 1 (left), and became reachable with mem = 2
(right).
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Figure 4: An example for a case where m∗ was reachable
for mem = 1 (left), and became unreachable with mem = 2
(right).

NP-Hardness of maximal optimal length determination
In order to evaluate whether the graph size can be reduced to

guarantee a more realistic upper bound on the time complex-
ity that is not exponential in the graph size, we examined the
possibility of limiting the construction of the graph based on
the maximal possible length of an optimal path from the ini-
tial vertex to the optimal steady cycle. In (Stone, Kaminka,
and Rosenschein 2010) it was shown that in two agent teams,
consisting of one ad hoc team member (agent A) and one
best-response team member (agent B), if mem = 1 then
the maximal size of an optimal path is at most min{x, y}.
However, we prove here that even in this simple case where
m∗ is known to be reachable (i.e., the optimal steady cycle
is known in advance), determining the maximal size of an
optimal path is NP-Hard when agent B has mem ≥ 2.

Denote the maximal length of an optimal path starting at
(a0, b0) to m∗ by S∗ (note that since it is the two agent game,
such a path always exists).

Theorem 1. In the two-agent case, finding S∗ when mem ≥
2 is NP-Hard.

Proof. The problem is proven to be NP-hard by a reduc-
tion from the Hamiltonian Path problem:Given an n-node
unweighted, undirected graph G, an initial node and a desti-
nation node, is there a simple path from initial to destination
of length n? That is, can we visit each node exactly once?
This decision problem is known to be NP-Complete (Garey
and Johnson 1990).

We will show that if it were possible to find S∗ for a given
matrix M with agent B’s mem > 1 in polynomial time,
then it would also be possible to find a Hamiltonian path in
polynomial time. To do so, we assume that we are given a
graph G = (V,E) such that |V | = n. We construct a matrix
M in a particular way such that if there is a path through the
matrix of cost no more than a target value of n ∗ (n4 − 1),
then there is a Hamiltonian Path in graph G. Note that, as
required, the construction of the matrix can be done in time
polynomial in all the relevant variables.

Let agent B’s mem = n. We construct the joint payoff
matrix M as follows.

• Agent A has (n − 1) ∗ n + 2 actions. The first action is
“start”, and agent B’s memory is initialized to n copies of
that action. Each of the next (n−1)∗n actions represents
a combination (i, t) of a vertex vi ∈ V (G) and a time step
t ≥ 2. M ’s payoffs will be constructed so that if the se-
quence satisfying the maximum cost requirement in M (if
any) includes action (i, t), then the corresponding Hamil-
tonian path passes through vi on time step t. Finally, there
is a “done” action to be taken at the end of the path.

• Agent B has n2 + n + 1 actions. The first n2 actions
are similar to agent A’s: one for each combination of
vj ∈ V (G) and t ≥ 1. If the satisfying sequence through
M includes agent B taking action (j, t), then the Hamil-
tonian path visits vj at time t. The next n actions are
designed as “trap” actions which agent B will be induced
to play if agent A ever plays two actions corresponding to
the same node in the graph: actions (i, s) and (i, t). There
is one trap action for each vertex, called action j. Finally,
the last action is the “done” action to be played at the end
of the sequence.
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• M ’s payoffs are constructed as follows, with the actions
named as indicated in the bullets above. The initial vertex
in the Hamiltonian path (the one visited on time step 1) is
called “initial.”

a) M [(i, t+ 1), (j, t)] = 1 if (vi, vj) ∈ E(G)
b) M [(i, t+ 1), (j, t)] = −n5 if (vi, vj) /∈ E(G)
c) M [(i, t), (i, t)] = tn
d) M [(i, t), (j, s)] = −n5 if t ≥ s
e) M [(i, t), (j, s)] = 0 if t < s
f) M [(i, t), i] = tn− 1

3n
g) M [(i, t), j] = 0
h) M [(i, t), done] = 0
i) M [start, (initial, 1)] = 1
j) M [start, initial] = 1

2

k) M [start, done] = −n4

l) M [start, j] = 0 ∀ action j /∈{initial,done}
k) M [done, (j, n)] = 1
l) M [done, (j, t)] = −n5 if t < n
m) M [done, done] = n4

Following a path through the matrix that corresponds to a
Hamiltonian path (if one existed) would give payoffs of 1 at
every step until reaching m∗ (n4) and staying there forever.
Thus the cost of the n-step path would be n ∗ (n4 − 1).

As there is no positive payoff in the matrix greater than
n2, any path longer than n steps must have cost of at least
(n + 1)(n4 − n2) = n5 + n4 − n3 − n2 > n5 − n =
n ∗ (n4 − 1). In other words, if there is a path through the
matrix corresponding to a Hamiltonian path in the graph,
then any longer path through M must have higher cost.

Furthermore, the matrix is carefully constructed such that
any diversion from the path corresponding to a Hamiltonian
path either will get a payoff of −n5 on at least one step
(which by itself makes the target cost impossible to reach),
will prevent us from getting one of the 1’s, or else will make
it so that the path to (done,done) will require more than n
total steps. In particular, if agent A ever takes two actions
that lead agent B to select a trap action, then agent B will
not take a different action until the n+1st step after the first
action that led to the trap, causing the path to (done,done) to
be at least n + 2 steps long. Therefore, if we could find the
optimal sequence through any matrix in polynomial time,
then we could use this ability to also solve the Hamiltonian
path problem, concluding our proof.

Related Work

Stone et al. (2010) introduced a formalism for Ad-Hoc
teamwork, which deals with teamwork behavior without
prior coordination. They raised a challenge “To create an
autonomous agent that is able to efficiently and robustly col-
laborate with previously unknown teammates on tasks to
which they are all individually capable of contributing as
team members”. This paper answers one aspect of the chal-
lenge raised there, namely leading teams of agents, with no
a-priori coordination and explicit communication to the op-
timal possible joint-utility, in a simultaneous-action setting.

Bowling and McCracken (2005) suggested two tech-
niques for incorporating a single agent into an unknown
team of existing agents: adaptive and predictive. In their
work, they are concerned with the task allocation of the

agent (which role should it choose, and what is its teams’
believed behavior), where their agent might adapt its behav-
ior to what it observes by the team. Jones et al. (2006)
examined the problem of team formation and coordination
without prior knowledge in the domain of treasure hunt.
They considered a team composed of heterogenous robots,
each with different capabilities required for various aspects
of searching an unknown environment and extracting a hid-
den treasure. Their architecture was based on role selection
using auctions. In contrast to these approaches, in our work
we examine how our agent can influence the behavior of the
team by leading the team to an optimal behavior.

Stone and Kraus (2010) considered the problem of ad
hoc teamwork by two agents, agent A (also known as the
teacher), and agent B in the k-armed bandit problem. The
question they asked was: Assuming that agent B observes
the actions of agent A and its consequences, what actions
should agent A choose to do (which bandit to pull) in order
to maximize the team’s utility. It was shown that in some
cases, agent A should act as a teacher to agent B by pulling
a bandit that will not yield optimal immediate payoff, but
will result in teaching agent B the optimal bandit it should
pull. In our work we also control the actions of agent A,
but the payoff is determined by the joint actions of the team
players, not by individual actions of each teammate.

Young (1993) introduced the notion of adaptive games,
where N agents base their current decisions on a finite
(small) horizon of observations in repeated games, and
search for agents’ actions yielding a stochastically stable
equilibrium using shortest paths on graphs. In our work,
we do not assume the agents play repeatedly (allowing to
adjust to a strategy), but we aim to guarantee that our agent
leads the team to the optimal possible joint action(s) while
minimizing the cost paid by the team along the way.

Numerous research studies exist in the area of normal
form games, where the agents’ payoffs are described in a
matrix (similar to our case) and depend on the chosen joint
actions. In the normal form games framework, a related
topic is the problem of learning the best strategy for a player
in repeated games. Powers and Shoham (2005) considered
the problem of normal form games against an adaptive oppo-
nent with bounded memory. Chakraborty and Stone (2008)
examine optimal strategies against a memory bounded learn-
ing opponent. Our work is inherently different from these
approaches, since in our case the agents are collaborating as
a team, hence they aim to maximize the joint payoff and not
the individual payoff, which raises different questions and
challenges as for the optimality of the joint action and the
way to reach this optimal joint action.

Conclusions and Future Work
In this paper we examine the problem of leading a team of
N ≥ 2 agents by an ad hoc team member to the team’s
joint actions yielding optimal payoff. We show that it may
not be possible to lead the team to the optimal joint action,
thus we offer a graphical representation of the system’s state
and a polynomial time algorithm that determines the optimal
reachable set of joint actions, and finds the path with mini-
mal system cost to that set. We examine the case in which
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the team members base their next action on more than one
previous joint action, describe an algorithm that calculates
the optimal strategy for the ad hoc team member in time ex-
ponential in the teammates’ memory size, and show that it is
not likely that there exists an algorithm that solves the prob-
lem in better time complexity.

There are various directions to be addressed as future
work. First, we are examining the case in which the team
is lead by more than one ad hoc team member. This raises
various interesting questions such as the possibility of coor-
dination among the ad hoc team members that might result
in better team performance. Other directions include non-
determinism in agents’ perception and uncertainty in the be-
havior of the team members.
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