
Discussion about Constraint
Programming Bin Packing Models

Jean-Charles Régin and Mohamed Rezgui
Université de Nice-Sophia Antipolis, I3S CNRS

2000, route des Lucioles - Les Algorithmes - BP 121
06903 Sophia Antipolis Cedex - France

jcregin@gmail.com; mohamed.rezgui@etu.unice.fr

Abstract
The bin packing problem is one of the core problems of cloud
computing management. It corresponds to the problem of as-
signing virtual machines to servers. However, cloud comput-
ing also imposes a huge variety of constraints on this problem
and most of them can not be expressed a priori. Constraint
Programming (CP) has been proved efficient for solving bin
packing instances and for its capability to deal with unex-
pected constraints. Nevertheless, CP approaches have never
been tested on large scale instances coming from cloud com-
puting. In this paper, we describe some CP models for solving
bin packing instances and we expect that some experiments
could identify precisely the advantages and the drawbacks of
these models for solving real life instances.

Introduction
Cloud computing is an emerging trend bringing together var-
ious kinds of virtualization technologies to offer on-demand
computing resources. There is widespread consensus that
the Future Internet will be heavily based on some kind of
successful Cloud technology. However, to master the de-
ployment of Cloud-based infrastructures, some hard scien-
tific problems need to be properly addressed first.

Several problems of the cloud computing management are
configuration problems where group of objects must be as-
signed to containers. The objects may be virtual machines
and the containers may be servers, but the objects can also
be the servers and the containers are power units.

These configuration problems can be seen as bin pack-
ing problems, which are defined as follows in their classical
version: objects of different capacities must be packed into a
finite number of bins of capacity C in a way that minimizes
the number of used bins. However, the problem is more gen-
eral than the classical bin packing problem: minimizing the
number of used servers costs less energy but several side
constraints must also be considered (e.g., agility, reliability,
sustainability). Computing optimized deployment plans re-
quires to solve a hard planning problem and that plan may
be subject to the addition of side constraints that cannot be
defined in advance. Therefore, a robust method is required.

Constraint Programming is such a method having the
capabilities to be easily adapted for considering new con-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

straints. In addition, several recent studies have shown that
this method is quite competitive for solving bin packing in-
stances (Shaw 2004; Schaus 2009).

Unfortunately, the proposed methods have two main
drawbacks: there are mainly focused on the resolution of
the pure version of the bin packing (all the bins are equiva-
lent and we want to minimize the number of used bins and
there is only one dimension) and only few specific instances
have been considered. Notably, the size of the considered
instances are two or three orders of magnitude smaller than
the cloud computing based instances. A well known internet
company has data center with 20,000 servers and millions of
virtual machines.

In order to obtain a more robust and more general method
capable to deal with large scale problems, we need first to
clearly identify the advantages and the drawbacks of the
current constraint programming models. Mainly, we need
to identify what parts of the model are really important and
what other parts are secondary. Then, we would like to study
the scalability of the current models and identify the cur-
rent limits. Therefore, we propose to consider all existing
CP models in order to answer to these questions.

First, we will discuss about the instances that are available
in the literature and present more pertinent ones. Then, we
will recall the basic model. Next, we will show that we can
consider two methods for reaching the optimality (and prov-
ing it). We will also present some lower bounds that have
been proposed. The classical strategies (first fit decreasing,
best fit decreasing, ...) for assigning items will be detailed.
After, we will investigate the dominance rules and the subset
sum constraint (also called knapsack constraint). In addition,
two other models will be introduced. At last, we will propose
to introduce additional constraints.

Instances
The quality of the instances we consider are quite impor-
tant for deriving some general conclusions. Unfortunately
it appears that most of the instances proposed in the liter-
ature have some major drawbacks. Gent (Gent 1998) criti-
cized the well known Falkenauer’s benchmarks (Falkenauer
1996). He closed five benchmark problems left open by cpu-
intensive methods using a genetic algorithm and an exhaus-
tive search method by using a very simple heuristic meth-
ods requiring only seconds of cpu time and hours of man-

21

AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08)



ual work. He questioned the underlying hardness of test data
sets. One reason of the problem is the kind of data sets. Most
of the time, the bins are filled in with only 3 items or less.

Unfortunately, the same kind of data sets have been pro-
posed by others (Scholl, Klein, and Jürgens 1997; Martello
and Toth 1990; Korf 2003). Korf explicitly considered
triplets instances.

We think it is quite important to be compared to other ex-
isting works, therefore we propose to use these benchmarks
that we can mainly found on the web page of A. Scholl.
However, if it is certainly interesting to consider such hard
instances, we should also be careful, as noted by I. Gent, and
we should use some other data sets.

We propose to use two other kinds of data:
• First we use the data defined for the multidimensional

knapsack problems (SAC 1994). The advantage is that the
capacities of the items are representative of real life in-
stances, and we can have several items per bins. Since the
data have been defined for a knapsack problem, we just need
to repeat or to mix several data for obtaining bin packing in-
stances.

• Then, we propose to generate instances in regards to
the criterion number of items per bin. The advantage of this
approach is that we can study the scalability of some mod-
els. The drawback is that it is difficult to avoid having some
randomness.

Basic model
Let I be the set of items and B be the set of bins. Each item
k is associated with the capacity cik and each bin j is asso-
ciated with the capacity cbj . In the basic model membership
variables are used, that is for each item i and each bin j, a
0-1 variable xij is defined. If the variable is equal to 1 then
it means that item i is assigned to bin j, else the variable is
equal to 0. The variable yj is a 0-1 variables stating that the
bin j has been used. The problem becomes:

min
m∑

j=1

yj

∀j
n∑

i=1

ciixij ≤ cbjyj (1)

∀i
m∑

j=1

xij = 1 (2)

x ∈ {0, 1}, y ∈ {0, 1}
Constraint (1) ensures that the capacity of a bin is not ex-
ceeded by the sum of the capacities of the items put in that
bin. Constraint (2) states that an item is put in exactly one
bin.

Slack Variables
Some slack variables may be introduced in order to add
some implicit constraints. Constraint (1) can be refined in

∀j
m∑

i=1

ciixij + sj = cbjyj

where sj is a variable expressing the capacity of bin j that
has not been used. In this case we can introduce the follow-
ing constraint:

n∑

i=1

cii +
m∑

j=1

sj =
m∑

j=1

cbj

The advantage of this approach is that the first and the last
part of this constraint are constant.

Increasing or Decreasing?
In order to find the minimal number of bins we have two
solutions:

• either we start with a convenient number of bins and
we try to reduce this number each time we find a solution.
That is, we successively decrease the number of required
bins until there is no more solution.

• or we compute a lower bound on the number of bins,
for instance by applying a greedy algorithm which breaks
items into several parts. Then, we increase this number
while there is no solution. The first found solution is the
optimal one.

Lower Bounds and Optimality
First, it could be interesting to measure the cost of reach-
ing the optimality and the cost of proving the optimality.
We could also consider integrating or not the classical lower
bounds proposed by Martello (Martello and Toth 1990) or
by Labbé (Labbé, Laporte, and Martello 2003). We do not
speak about their methods here but simply about their lower
bounds L2 and L3.

Strategies
Well known strategies have been developed for bin packing.
Notably:

• first fit decreasing,
• best fit decreasing
• worst fit decreasing.

For all these strategies, the items are fit into bins by con-
sidering them by non increasing capacities. For the first de-
creasing strategy, the first bin in which an item can be put
is selected. For the best fit decreasing strategy, we select the
bin such that the remaining capacity after setting the item is
minimal. For the worst fit decreasing strategy, we select the
bin leaving the largest capacity after setting the item.

Symmetry breaking
Symmetries are quite frequent in bin packing problems. Sev-
eral symmetry methods or dominance rules must be consid-
ered. Note that we should be really careful about the com-
binations of these rules. There are all based on the inter-
changeability of objects. Thus, we have to ensure that the
object are effectively interchangeable before applying one of
these rules. Particularly we have to check that no other rule
currently applied could interfere with the application of the
rule we consider. These rules have been proposed by (Shaw
2004; Schaus 2009; Korf 2003):

22



• Items having the same capacity are interchangeable.
Therefore, we should state that if item i and j have the same
capacity and i < j then the assigned bin of item i is less
than or equal to the assigned bin of item j.

• If there is no constraint between bins and if a bin j has
a capacity greater than a bin k then the bin j should be more
fill than bin k

• If an item can be fit into several interchangeable bins
then we fit it into the first one and we do not try the other
interchangeable bins for this item.

• If a bin can contain only one more item, we fit into that
bin the item having the largest capacity.

• If an item can totally fill a bin then we fit this item into
that bin and we do not try any other bin for this item.

We have to be careful about the fact that the additional
constraints of real life instances may prevent from the appli-
cation of these rules.

Sum constraint
The difficulty of the bin packing is twofold: we need to solve
a simple packing problem, in other words a knapsack prob-
lem with unit cost also named subset sum problem, and we
need to repeat that resolution for a set of bins in order to
minimize the number of used bins. Therefore, we can either
focus our attention on the independent subset sum problems
or on the combinations of bins.

Several filtering algorithms have been proposed for the
subset sum problem:

• the classical one establishing bound consistency
• the algorithm of M. Trick which establishes arc consis-

tency but with a pseudo polynomial complexity (Trick 2003)
• the algorithm described by JC. Régin and based on a

reformulation (Régin 2011)
On the other hand there are two other works that have

been carried out:
• P. Shaw designed an interesting filtering algorithm

(Shaw 2004). It is difficult to characterize but it seems to
be worthwhile.

• P. Schaus proposed another algorithm based on the pre-
emption relaxation of the underlined assignment problem of
the bin packing (Schaus 2009).

All these algorithms deserve to be compared.

Capacitated Variables
In the basic model, we deal with membership variables. With
this model it is quite important to break some symmetries
because items having the same capacity are interchangeable.
In addition, the drawback of this model is that it is difficult
to avoid a quadratic memory complexity. If we have n items
and m bins then we need nm variables. With capacitated
variables we expect to overcome this difficultly. The idea is
to gather the items having the same capacity. Then instead
of membership variables, we will have variables counting
the number of times an item of a given capacity is taken.
So, if we have p items having different capacities then we
need to have only pm variables. Moreover, we avoid the in-
terchangeability problem between items having the same ca-
pacity.

Subset Sum Variables
For each bin we propose to generate all the possible combi-
nations of the subset sum constraint associated with the bin
(i.e. Constraint (1) of the basic model). Then, in a solution
a bin takes only one of these combinations. Therefore, we
propose to use for each bin a variable whose domain is one
of the solutions of the subset sum constraint.

Introduction of additional constraints
In order to simulate some problems arising in real life we
propose to introduce some constraints perturbing some mod-
els and notably some symmetry breaking rules:

• we restrict the assignment of some items to some bins.
• we impose that some items must be fit into the same

bins than some other ones
• we impose that some items cannot be fit into the same

bin than some others

Conclusion
We have presented the most well known CP models for solv-
ing bin packing problems. We expect that some experiments
could give us a better understanding of the strengths and the
weaknesses of each CP model used for solving large scale
bin packing instances.

References
Falkenauer, E. 1996. A hybrid grouping genetic algorithm
for bin packing. Journal of Heuristics 2:5–30.
Gent, I. 1998. Heuristic solution of open bin packing prob-
lems. Journal of Heuristics 3:299–304.
Korf, R. 2003. An improved algorithm for optimal bin pack-
ing. In Proc. IJCAI-03. 1252–1258.
Labbé, M.; Laporte, G.; and Martello, S. 2003. Upper
bounds and algorithms for the maximum cardinality bin
packing problem. European Journal of Operational Re-
search 149(3):490–498.
Martello, S., and Toth, P. 1990. Knapsack Problems. John
Wiley and Sons Inc.
Régin, J.-C. 2011. Hybrid Optimization - The 10 years of
CPAIOR. Springer. chapter Global Constraints: a survey.
SAC. 1994. Sac94 suite: Collection of multiple knapsack
problems.
Schaus, P. 2009. Solving Balancing and Bin-Packing prob-
lems with Constraint Programming. Ph.D. Dissertation,
Université catholique de Louvain-la-Neuve.
Scholl, A.; Klein, R.; and Jürgens, C. 1997. Bison: a fast
hybrid procedure for exactly solving the one-dimensional
bin packing problem. Computers & Operations Research
24:627–645.
Shaw, P. 2004. A constraint for bin packing. In CP’04,
648–662.
Trick, M. 2003. A dynamic programming approach for con-
sistency and propagation for knapsack constraints. Annals
of Operations Research 118:73 – 84.

23


