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Abstract

Mobile robots are increasingly being used in the real-world
due to the availability of high-fidelity sensors and sophisti-
cated information processing algorithms. A key challenge to
the widespread deployment of robots is the ability to accurately
sense the environment and collaborate towards a common ob-
jective. Probabilistic sequential decision-making methods can
be used to address this challenge because they encapsulate the
partial observability and non-determinism of robot domains.
However, such formulations soon become intractable for do-
mains with complex state spaces that require real-time opera-
tion. Our prior work enabled a mobile robot to use hierarchical
partially observable Markov decision processes (POMDPs) to
automatically tailor visual sensing and information process-
ing to the task at hand (Zhang, Sridharan, & Li 2011). This
paper introduces adaptive observation functions and policy
re-weighting in a three-layered POMDP hierarchy to enable
reliable and efficient visual processing in dynamic domains.
In addition, each robot merges its beliefs with those communi-
cated by teammates, to enable a team of robots to collaborate
robustly. All algorithms are evaluated in simulated domains
and on physical robots tasked with locating target objects in
indoor environments.

Introduction
In recent times, mobile robots have been used in many dif-
ferent application domains such as autonomous navigation,
health care and disaster rescue due to the ready availability of
high-fidelity sensors at moderate costs and the development
of sophisticated sensory input processing algorithms (Thrun
2006; Hoey et al. 2010). Such real-world application domains
are characterized by non-deterministic action outcomes, par-
tial observability and dynamic changes. The sensory inputs
are noisy and the corresponding processing algorithms extract
information with different levels of uncertainty and computa-
tional complexity. Though partially observable Markov deci-
sion processes (POMDPs) (Kaelbling, Littman, & Cassandra
1998) elegantly encapsulate these characteristics of robots
deployed in the real-world, such formulations are intractable
because of the associated state space explosion and the high
computational complexity of the corresponding solvers (Ross
et al. 2008). Our previous work (Zhang, Sridharan, & Li 2011;
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Sridharan, Wyatt, & Dearden 2010) introduced a hierarchical
decomposition of POMDPs that enabled a mobile robot to
tailor visual sensing and information processing to the task
at hand. However, this hierarchy was limited to visual pro-
cessing on a single robot in non-cluttered (and mostly static)
application domains.

This paper introduces adaptive observation functions and
policy re-weighting in the POMDP hierarchy for reliable and
efficient visual sensing and processing in dynamic domains.
A probabilistic scheme is then used to enable each robot
to merge beliefs acquired by sensing the environment with
similar beliefs communicated by teammates, resulting in
robust collaboration between a team of robots. All algorithms
are evaluated on simulated and physical robots for the task
of locating targets in dynamic indoor environments.

Related Work
Classical planning methods compute a pipeline of visual oper-
ators for a high-level goal using deterministic action models
whose preconditions and effects are propositions that need to
be true or are made true by operator execution. However, in
robot domains, the state is not directly observable and actions
are unreliable.

In vision research, image interpretation has been modeled
using MDPs and POMDPs. For instance, Li et al. (Li et al.
2003) use human-annotated images to determine the reward
structure, explore the state space and compute value func-
tions that are used for making the action choices. Similarly,
active sensing has been used to decide sensor placement and
information processing, e.g., using particle filters for estimat-
ing a multitarget probability density (Kreucher, Kastella, &
Hero 2005). Sensor placements in spatial phenomena have
also been modeled as Gaussian processes using submodular
functions (Krause, Singh, & Guestrin 2008). However, many
visual planning tasks are not submodular, and modeling prob-
ability densities using manual feedback over many trials is
infeasible on robots.

Though a default POMDP formulation is well-suited for
partially observable and non-deterministic domains, it is in-
tractable for complex domains with large state spaces. Pineau
and Thrun (2003) proposed a hierarchical POMDP approach
where the top level action of a robot is a collection of simpler
actions modeled as smaller POMDPs; planning occurs in a
bottom-up manner, and execution proceeds in a top-down
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Figure 1: Overview

manner. Similar approaches have been used for robot nav-
igation (Foka & Trahanias 2005) but a significant amount
of data for the hierarchy and model creation is hand-coded.
Recent work has focused on learning POMDP observation
models (Atrash & Pineau 2010); using information maxi-
mization for POMDP-based visual search (Butko & Movel-
lan 2008) and developing faster solvers (Ross et al. 2008).
However, these methods are computationally expensive, or
require considerable human input.

Several algorithms continue to be developed for multia-
gent and multirobot collaboration in a variety of domains (de
Weerdt & Clement 2009; Panait & Luke 2005). Sophisti-
cated algorithms have also been developed recently for using
decentralized POMDPs (Dec-POMDPs) for multiagent col-
laboration (Kwak et al. 2010). However, the computational
complexity of these formulations is more severe than the de-
fault POMDP formulations (Bernstein et al. 2002). Research
has also shown that using complex communication strategies
does not necessarily aid in better collaboration (Rybski et al.
2004). This paper hence proposes a probabilistic scheme that
uses shared beliefs of teammates (obtained using the hier-
archical POMDP) to enable robust multirobot collaboration
despite unreliable communication.

Hierarchical Planning and Collaboration
This section describes the proposed approach for reliable
visual processing and robust multirobot collaboration. The
algorithms are illustrated using the challenge task of a team
of robots locating objects in dynamic indoor (office) domains.
Experiments are performed on the humanoid and wheeled
robots shown in Figure 2.

Hierarchical POMDPs for Visual Processing
This section summarizes the three-layered POMDP hierarchy
for visual sensing and processing on a robot. As shown in
Figure 1, the high-level (HL) POMDP chooses a sequence of
3D scenes to process based on the task (where to look?). The
intermediate-level (IL) POMDP analyzes images of a chosen
scene to select the salient region of interest (ROI) in the im-
age to be processed next (what to process?). Each ROI uses a
lower-level (LL) POMDP to compute the sequence of visual
operators to be applied to address the specific task (how to

Figure 2: Robot test platforms

process?). Our prior work used an instance of this hierarchy
in non-cluttered (and mostly static) indoor domains (Zhang,
Sridharan, & Li 2011). The HL-POMDP and the modifica-
tions introduced for dynamic domains are described here. The
IL-POMDP and LL-POMDPs are summarized briefly—they
have been used in earlier work for human-robot interaction in
a simplistic tabletop scenario (Sridharan, Wyatt, & Dearden
2010).

Target objects can exist in different locations, and a robot
has to move to analyze different scenes and locate the objects.
Assume that the robot has a learned map of its world (Dis-
sanayake, Newman, & Clark 2001) and has to locate a
specific target. The robot represents the 3D area as a dis-
crete 2D occupancy grid. Each grid cell stores the likeli-
hood of target occurrence in that cell. The HL-POMDP then
poses sensing as the task of maximizing information gain,
i.e., reducing the entropy in the belief distribution over the
grid map. For a grid with N cells, the HL-POMDP tuple
〈SH ,AH ,T H ,ZH ,OH ,RH〉 is defined as:
• SH : si, i ∈ [1,N] is the state vector; si corresponds to the

event that the target is in grid cell i.
• AH : ai, i ∈ [1,N] is the set of actions. Executing ai causes

the robot to move to and analyze grid cell i.
• T H : SH ×AH ×S′H → [0,1] is the state transition function,

an identity matrix for actions that do not change the state.
• ZH : {present, absent} is the observation set that indicates

the presence or absence of the target in a specific cell.
• OH : SH ×AH × ZH → [0,1] is the observation function

that is learned automatically (see below).
• RH : SH ×AH → ℜ is the reward specification that is based

on belief entropy (see below).
The robot maintains a belief state, a probability distribution
over the state. The entropy of belief distribution Bt is:

H (Bt) =−
N

∑
i=1

bi
t log(bi

t) (1)
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where bi is the ith entry of the belief distributed over the grid
cells. An action’s reward is the entropy reduction between
belief state Bt−1 and the resultant belief state Bt :

RH(at) :=H (Bt−1)−H (Bt) (2)

=∑
k

bk
t log(bk

t )−∑
j

b j
t−1log(b j

t−1)

As the belief distribution slowly converges from a uniform
distribution to states likely to be target locations, the en-
tropy reduces. Unlike our prior work (Zhang, Sridharan, & Li
2011), the observation function is defined adaptively based
on the locations of obstacles and the expected performance
of the lower levels of the hierarchy:

O(zi = present,s j,ak) =

{
β if isBlocked(s j,ak)

η · e−
λ μ2

2σ2 otherwise
(3)

where p(zi = present|s j,ak), the probability of finding the
target in cell i given that the target is in cell j and focus is
on cell k, is a Gaussian whose mean depends on the target’s
location, the cell being examined and the field of view: μ =
fμ(s j,ak). The variance is based on the expected observations
from the lower levels of the hierarchy: σ2 = fσ2(O,OI |s j,ak).
If there is any obstacle between cells j and k, β is a small
probability that the target can still be observed. POMDP
solvers take such a model and compute a policy: πH : Bt �→
at+1 that maps beliefs to actions. This paper uses policy
gradient methods to compute the HL policy that minimizes
belief entropy), in the form of stochastic action choices, i.e.,
“weights” used to probabilistically choose actions (Buffet &
Aberdeen 2009).

Convolutional Policy The HL-POMDP formulation be-
comes intractable for domains with large state spaces due
to the high computational complexity of POMDP solvers. A
convolutional policy kernel is hence learned by exploiting
the (local) rotation and shift-invariance of visual search:

K̄(s) = (πH ⊗ CK
m)(s) =

∫
πH(s̃)CK

m(s− s̃)ds̃, (4)

K = (∑
ai

K̄) ·/W

where K̄ is the un-normalized kernel, πH is the HL-POMDP
policy, K is the normalized policy and CK

m is the convolution
mask whose size decides the size of target kernel.

Consider Figure 3(a), where a 3× 3 policy kernel is ex-
tracted from a 5×5 baseline policy. Each row of the baseline
policy πH is re-arranged to obtain a 2D matrix of the same
size as the map—this matrix stores action weights when fo-
cusing on a specific state. The policy is hence decomposed
into layers—left column of Figure 3(a). When a robot visits
a grid cell, only the beliefs immediately around that grid cell
change substantially. The policy kernel is hence learned by
focusing on a local area, and setting all other weights to a
much smaller value. For instance, the 3×3 policy kernel K̄
is computed by convolving a 3× 3 mask with these policy
layers—middle column of Figure 3(a). In parallel, the num-
ber of accumulated weights for each action is counted and the

matrix W is used to obtain the normalized kernel K—right
column of Figure 3(a).

The computed kernel does not assign action weights to the
grid cells further away from the center of the convolution
mask. Since these weights are usually much lower than the
values in the kernel, they are all set to a small value:

W B =

∑
actions

∑
states

πH − ∑
actions

∑ K̄

Nactions ×Nstates −∑W
(5)

where the default weight value is a function of the number of
actions: Nactions and the number of states: Nstates.

Policy Extension The kernel is then used to efficiently
compute the convolutional policy for a larger map:

πH
C (s) = (K ⊗CE

m)(s) =
∫

K(s̃)CE
m(s− s̃)ds̃ (6)

where πH
C is the convolutional policy, K is the policy kernel

and CE
m is the convolution mask of the same size as the target

map. Consider Figure 3(b), where the 3× 3 kernel is con-
volved with a 7×7 mask to generate the policy for a 7×7
map. The desired policy is generated one layer at a time, by
centering the kernel on the state represented by the layer—
the current example has 49 layers. Since the kernel covers
(at most) nine grid-cells, other cells are assigned the weight
computed in Equation 5 and the policy is normalized.

A mobile robot has to physically move between grid cells.
Since this movement is unreliable, it is associated with a
heuristic cost proportional to the distance to be moved. Dur-
ing policy execution, each action’s weights are hence revised
based on the distance and the robot’s speed:

ŵ(i) = w(i)
1

1+ dA∗ (ai,a j)
speed

(7)

where dA∗(ai,a j) is the distance between the current cell and
the candidate cell, computed using the A∗ algorithm (Russell
& Norvig 2003). The revised policy trades off likelihood of
locating the target against the cost of traveling to that location.
When the domain map changes, the revised distances change
action weights for subsequent computations.

The overall operation of the POMDP hierarchy is as fol-
lows: the learned world map and models of the visual opera-
tors are used to generate the HL-POMDP model. The corre-
sponding HL policy chooses a 3D scene to analyze next for
the target object. The robot moves to this scene and captures
images. Each salient region of interest (ROI) in an image is
modeled as an LL-POMDP, where actions are information
processing operators (e.g., detect color, object category). The
corresponding LL policy provides the sequence of operators
suitable to detect the target in a specific ROI. The LL poli-
cies of all image ROIs are used to create an IL-POMDP, and
executing an action in the corresponding IL policy directs
the robot’s attention to a specific ROI. The result from the
corresponding LL policy causes a belief update and action
choice in the IL until the presence or absence of the target in
the image is determined. The IL outcome causes an HL belief
update and subsequent analysis of a grid cell until the target is
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(a) Kernel Extraction (b) Policy Extension

Figure 3: Convolutional Policy: (a) Extract 3×3 kernel from 5×5 baseline policy; (b) Extend 3×3 kernel to 7×7 policy.

found. The entire operation occurs reliably and efficiently due
to the adaptive convolutional policies and automatic belief
propagation. Furthermore, a high-level symbolic planner can
be used to provide a sequence of goals (e.g., prioritized list
of targets) that will be achieved using the proposed POMDP
hierarchy.

Multirobot Collaboration

Consider a team of X robots that is tasked with locating Y
targets. Each robot maintains a separate belief vector (over
the map) for each target, and tailors its sensing and visual
processing using hierarchical POMDPs as described above.
This section describes a probabilistic scheme for a team of
robots to collaborate to locate all the targets.

For ease of explanation and without loss of generality, it is
assumed that the targets are unique and that the observations
of targets are independent of each other. Each robot stores:

{Bi, fi}, ∀i ∈ [1, |T L|] (8)

where Bi is the belief vector for a specific target i among the
list of target objects (T L) and fi is a binary flag that states if
the target has been discovered. In addition, the robot stores
an action map M , each of whose entries stores the number
of times the robot has visited the corresponding grid cell:

M = 〈m1, · · · ,mN〉 (9)

where mi is the count of the number of times grid-cell i has
been visited. The counts are updated after an action and the
corresponding observation updates the appropriate belief vec-
tor. After the belief update, each robot broadcasts a package
that includes its current belief vectors (∀iBi), discovery flags
(∀i fi) and action map (M ).

Though the communicated estimates cannot be trusted
completely, they provide useful information about map lo-
cations that the robot has not visited. Each robot therefore
assigns a weight to own beliefs and communicated beliefs
based on whether the robot generating this belief has recently

observed the corresponding map region:

b j,own
i =

m j,own
i ·b j,own

i +m j,comm
i ·b j,comm

i

m j,own
i +m j,comm

i

(10)

∀ j ∈ [1,N], ∀i ∈ [1, |T L|]
where b j

i is jth entry of the belief vector of target i, while
m j,own

i and m j,comm
i are entries of the action maps of the

robot and the teammate whose communicated belief is being
merged. The discovery of each target is based on:

F = { f own
i || f comm

i ;∀i ∈ [1, |T L|]} (11)

where each target is assumed to be found when at least one
robot has discovered it. Once a target has been discovered,
a robot that requires a new target chooses an undiscovered
object from the list (T L):

targetID = argmaxi{max
j

Bi( j)} (12)

where the goal is to select the target whose location the
robot is likely to discover with least effort, based on own and
communicated beliefs. An additional heuristic cost based on
distance of travel can be added, similar to Equation 7.

Experimental Setup and Results
This section describes the results of experiments performed
in simulation and on the robots of Figure 2. The goal is to
evaluate the robot’s ability to: (a) use adaptive convolutional
policies (CC) and the POMDP hierarchy to achieve reliable
and efficient visual sensing and processing in complex do-
mains; and (b) probabilistically merge its beliefs with commu-
nicated beliefs of teammates to achieve robust collaboration.
The execution of IL and LL policies are not described—the
corresponding results are bundled into a single response for
an HL action. The POMDP models are solved using a policy
gradients algorithm and multirobot collaboration is evaluated
in the context of searching for targets in dynamic indoor
scenarios.

Since executing many trials on robots is infeasible, a real-
istic simulator was used to generate grid maps and randomly
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choose the initial positions of targets and robots. The simu-
lated observations were based on the models learned by the
robot. Unreliable wireless communication was simulated by
varying the rate at which communicated packets were lost.

For robot experiments, objects were characterized by vi-
sual features, e.g., color and image gradients extracted using
the VLFeat library (Vedaldi & Fulkerson 2009). Objects at
known locations are used by the robot to collect image fea-
ture statistics, which are used to learn the LL observation
functions and the feature representations for objects. The
grid cells vary in size (1−3m) based on the field of view of
cameras. Robots, boxes, chairs and other objects in the lab
were used as targets.

Experiments evaluated three hypotheses: (I) the CC policy
provides similar detection accuracy but is much more efficient
than the non-convolutional (i.e., baseline) policy; (II) the
CC policy results in higher reliability than an ad-hoc search
strategy; and (III) the belief merging enables a team of robots
to collaborate robustly.

Simulation Experiments
In the simulation experiments, each data point is the average
of 1000 trials. The figures also include robot trials wherever
appropriate. In order to evaluate hypothesis I, a baseline
policy was computed for a 5×5 map in a few hours—this is
a one-time computation. A 5×5 policy kernel derived from
this policy was used to compute policies for larger maps.
Figure 4(a) compares the CC policy against the baseline
policy for a 7× 7 map—the x-axis shows the number of
times the policy was invoked, as a fraction of the number of
states. A trial was successful if the location of the target was
identified correctly. No statistically significant difference was
observed in the performance of the CC and baseline policies.

To evaluate hypothesis II, the convolutional policy’s perfor-
mance was compared against an ad-hoc policy that defaults
to random actions when there is no prior knowledge of target
location. The results in Figure 4(b) used a 15×15 convolu-
tional policy generated from a 5× 5 kernel. The locations
of the robot and the target were randomly selected for each
trial. The data points were generated by terminating trials
at different time steps—the grid cell with the largest belief
value was then considered the target’s location. Performance
is scored as the weighted distance between the actual and
detected locations of the target. Figure 4(b) shows that the
CC policy significantly reduces the number of steps required
to locate the target reliably. Over trials conducted on a range
of grid maps, the hierarchical POMDPs with the adaptive CC
policy result in an (average) accuracy of 96% in comparison
to the 80% accuracy of ad-hoc strategy. The few errors cor-
respond to situations where the target is at the edge of two
grid cells—the estimated location is no more than one cell
away from the actual location. When the domain map was
changed dynamically, the robot adapted automatically, with
an expected increase in the number of actions required to
detect targets with the same accuracy.

To evaluate hypothesis III, all robots in a team were as-
sumed to move at the same speed and the average distance
moved by the robots in a team (in one trial) was used as a
measure of the team’s performance. Robots and targets were

placed randomly in a grid map, with no more than one robot
or target in each grid cell. When the belief in a grid cell ex-
ceeded 0.9, it was assumed to contain a target. Figure 4(c)
shows the results for different combinations of robots and
targets in a 15×15 grid map based on a real-world office sce-
nario. The results show that the robots collaborate effectively
to find the targets—similar results were obtained with grid
maps of different sizes.

Figure 5(a) shows examples of the team’s performance (for
a specific number of robots and targets) as a function of prior
knowledge. As expected, the robots are able to identify the
targets faster when more information about target locations
is available. Figure 5(b) shows results of trials, as a func-
tion of varying communication success rate (CSR), where
robot teams were asked to locate two targets. Though a low
likelihood of successful communication hurts the team’s per-
formance, it soon stabilizes and does not change significantly
as CSR increases.

Figure 5(c) shows results corresponding to an experiment
where two robots had to locate three targets in a 15× 15
map, in comparison to an ad-hoc policy that assigns robots
to targets heuristically and selects actions randomly. The
proposed strategy takes a much smaller number of steps than
the ad-hoc scheme to detect target objects with high accuracy,
e.g., for an accuracy of 0.9, the average distance traveled
using the proposed strategy is less than that traveled using
the ad-hoc scheme by ≈ 88 units, which corresponds to ≈ 13
actions. Over extensive simulation experiments (and some
robot trials) in different maps (3× 3 to 25× 25), using the
CC policy, hierarchical POMDPs and collaboration strategy
enables a team of robots to collaborate robustly and identify
desired targets reliably and efficiently.

Robot Experiments
The algorithms were also evaluated on a team of robots in
indoor scenarios—see Figure 1. The robots and target objects
are randomly placed in the indoor domain that is discretized
to form the grid map. When the robot moves to a specific
grid cell, it processes salient regions (ROIs) of images of that
scene to detect the target. The robots use UDP to commu-
nicate with each other. Two capabilities were evaluated: (a)
each robot is able to locate objects reliably and efficiently;
and (b) a team of robots is able to collaborate robustly.

The results in Figure 4(b) include the results of 30 trials
on a robot in indoor corridors and offices that are mapped to
a 15×15 grid with walls, doors and other obstacles. The CC
policy performs much better than the ad-hoc policy on the
robots—for a specific (high) accuracy level, the CC policy
requires a much smaller number of steps than the ad-hoc
policy. The target is recognized in the correct location during
all experimental trials on the robot because the robot is able
to acquire different views of the target.

The multirobot collaboration strategy was then compared
against an ad-hoc strategy, a voting mechanism to dis-
tribute targets among robots using manually generated heuris-
tics (Stone et al. 2006). Experiments consisted of 25 trials
with 2-3 robots and 2-3 targets. The proposed strategy suc-
cessfully identified all targets in all trials, in comparison
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Figure 4: (a) Detection accuracy with CC policies is similar to an expensive baseline policy; (b) CC policies performs better than
a ad-hoc search strategy; (c) Belief merging and hierarchical POMDPs result in robust multirobot collaboration.
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Figure 5: (a) Performance improves if prior information is incorporated; (b) Performance is robust to dropped packages; and (c)
Proposed strategy results in significantly better collaboration than ad-hoc strategy.

to the 85% accuracy of the ad-hoc strategy, and required a
smaller number of steps to detect targets.

Conclusion
This paper described an approach for hierarchical visual pro-
cessing and multirobot collaboration. The POMDP hierarchy
enables a robot to sequence a subset of unreliable visual op-
erators to automatically, reliably and efficiently tailor visual
sensing and processing to the task at hand. The proposed
multirobot collaboration scheme accounts for the unrelia-
bility of sensing and communication in the belief merging
process, enabling a team of robots to collaborate robustly in
dynamic domains. Future research will use learned models of
the sensing and actuation capabilities of individual robots in
the decision-making, and experiment with a larger number of
robots and targets. The ultimate goal is to enable reliable, effi-
cient and autonomous multirobot collaboration in real-world
scenarios.
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