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Abstract

Reasoning agents are often faced with the need to robustly
deal with erroneous information. When a robot given the task
of returning with the red cup from the kitchen table arrives
in the kitchen to find no red cup but instead notices a blue
cup and a red plate on the table, what should it do? The
best course of action is to attempt to salvage the situation
by relying on its preferences to return with one of the ob-
jects available. We provide a solution to this problem using
the Situation Calculus extended with a notion of belief. We
then provide an efficient practical implementation by map-
ping this formalism into default rules for which we have an
implemented solver.

Introduction and Motivating Example

The Robocup@Home (see www.robocupathome.org)
competition is an international robotics initiative to foster
research into domestic robots; robots that can assist humans
within a wide range of environments from fetching items
within the home through to shopping for groceries. This ini-
tiative aims to focus the research in robotics onto developing
relevant techniques and technologies.

A necessary requirement for the development of domes-
tic robots is the need to perform tasks in response to user
commands. This requires the ability to deal with possibly er-
roneous information being provided by the human operator
(either deliberately or accidentally). For example, the robot
may be instructed to fetch an item from another room that is
no longer in the place specified by the operator. Furthermore,
as this example highlights, not only may the information be
incorrect but the robot may not realise this fact until partway
through the task.

In keeping with its role as a domestic helper, the robot
would be expected to behave in a manner consistent with a
human’s responses in a similar situation – with robustness
and flexibility. Possible responses could vary from simply
reporting the failure back to the operator, through to trying
to fulfil a task that most closely satisfies the specified goal,
based on background commonsense knowledge.

The requirement to operate under erroneous information
is demonstrated in the “General Purpose Service Robot”
challenge of the Robocup@Home 2010 Competition.1 The
following scenario is based on an example from this chal-
lenge.

1http://www.robocupathome.org/documents/rulebook2010˙
FINAL˙VERSION.pdf

Scenario 1 The robot is initially located in the living room
of the home. The home has a kitchen with a table in the mid-
dle. The robot is told to fetch the red cup from the kitchen ta-
ble. However, there is no red cup on the kitchen table and the
robot only discovers this fact once it arrives in the kitchen
and looks for the cup on the table.

We highlight two separate cases. In the base case there is
only a blue cup on the table. In the extended case there is a
blue cup and a red plate on the table.

While it is impossible to know the precise intentions of
the human operator, the robot can nevertheless apply com-
monsense knowledge to exhibit natural behaviours. In the
first case, faced with no alternatives, it might simply fetch
the blue cup. In the second case, the robot might assume
that the user is more interested in the type of object than its
colour and so would prefer the blue cup over the red plate.

The rest of the paper proceeds as follows. We first pro-
vide the technical background to understand the paper. Then
we describe a formal specification of the above scenarios
in terms of the traditional Situation Calculus. To deal with
the problem of erroneous information, we employ a version
of the Situation Calculus extended with a notion of belief
(Shapiro et al. 2011). Preferences derived from the prob-
lem statement and commonsense knowledge are used there
to determine alternative courses of action. Next, we present
another solution, that is based on prioritised default logic for
which we have an implementation. Finally, we show that the
two solutions yield the same results, discuss our findings in
a broader context and conclude.

Technical Preliminaries

Situation Calculus

The Situation Calculus provides a formal language based on
that of classical first-order logic in which to describe dy-
namic domains (McCarthy 1963; Reiter 2001). Three types
of terms are distinguished: situations representing a snap-
shot of the world; fluents denoting domain properties that
may change as a result of actions; and actions that can be
performed by the reasoner. We use the predicate Holds(f, s)
to specify that a fluent f holds at a particular situation. As
a matter of convention a short form is adopted such that for
any n -ary fluent f(x1, . . . , xn), writing f(x1, . . . , xn, s)
is a short form for Holds(f(x1, . . . , xn), s). A special func-
tion do(a, s) represents the situation that results from per-
forming action a at situation s. S0 denotes the initial situ-
ation where no actions have taken place. For each action we
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need to specify preconditions Poss(a, s) specifying the con-
ditions under which action a is possible in situation s and
effect axioms that specify how the value of a fluent changes
when an action is performed.2 For a more comprehensive
technical formulation of what is required of a Situation Cal-
culus theory, the reader is referred to (Reiter 2001).

Iterated Belief Revision in the Situation Calculus

A request to an agent to carry out a goal affects its beliefs.
For instance, when the agent is asked to collect the red cup
from the kitchen table, it is reasonable for the agent to be-
lieve that there is in fact a red cup located on the kitchen
table. We therefore adopt an extension to the Situation Cal-
culus capable of representing beliefs. Several accounts ex-
ist (Shapiro et al. 2011; Demolombe and Pozos-Parra 2006)
however we use that of (Shapiro et al. 2011). It is based on
the ideas of Moore and extended by (Cohen and Levesque
1990) who introduced knowledge into the Situation Calcu-
lus by reifying the accessibility relation in modal semantics
for knowledge. These accounts distinguish two types of ac-
tions: physical actions which alter the world (and hence flu-
ent values) when performed; and, sensing actions that are
associated with a sensor possessed by the agent and deter-
mine the value of a fluent (e.g., a vision system would be
used to determine whether a red cup is on a table). Sensing
actions are also referred to as knowledge producing actions
since they inform the reasoner about the value of a fluent but
do not alter the state of the world.

(Scherl and Levesque 2003) introduce the relation
B(s′, s) denoting that if the agent were in situation s, it
considers s′ to be possible and this is adopted by (Shapiro
et al. 2011).3 The successor state axiom for the B rela-
tion is given in the table below as Axiom (1) and states that
s′′ is possible at the situation resulting from performing ac-
tion a at situation s whenever the sensing action associ-
ated with a agrees on its value at s and s′ . SF(a, s) is a
predicate that is true whenever the sensing action a returns
the sensing value 1 at s and was introduced by (Levesque
1996). The innovation of (Shapiro et al. 2011) is to associate
a plausibility with situations. Plausibility values are intro-
duced for initial situations and these values remain the same
for all successor situations as expressed in Axiom (2) be-
low. This is critical for preserving introspection properties
for belief. The plausibility values themselves are not impor-
tant, only the ordering over situations that they induce. Ax-
ioms (3) and (4) define the situations s′ that are most plau-
sible and most plausible situations that are possible (i.e., B-
related) at s respectively. In Axiom (5) we define sentence
φ to be believed in situation s whenever it is true at all the
most plausible situations that are possible at s. Finally, Ax-
iom (6) specifies that any situations B-related to an initial
situation are also initial situations. The distinguished predi-
cate Init(s) indicates that s is an initial situation.

1. B(s′′, do(a, s)) ≡ ∃s′[B(s′, s) ∧ s′′ = do(a, s′)∧
2In fact, we compile effect axioms into successor state axioms

(Reiter 2001).
3Note the order of the arguments as it differs from that com-

monly used in modal semantics of knowledge.

SF(a, s′) ≡ SF(a, s))]
2. pl(do(a, s)) = pl(s)
3. MP(s′, s) def

= ∀s′′.B(s′′, s) ⊃ pl(s′) ≤ pl(s′′)
4. MPB(s′, s) def

= B(s′, s) ∧ MP(s′, s)
5. Bel(φ, s) def

= ∀s′.MPB(s′, s) ⊃ φ[s′]
6. Init(s) ∧B(s′, s) ⊃ Init(s′)
We now turn to a formalisation of our scenario by first con-
sidering the part of the problem that can be specified by
the basic situation calculus before turning to our approach
which deals with achieving goals and requires the extensions
described in this section.

Formalisation
In the first place the scenario has a number of inherently
bivalent properties: the robot is in the living room or kitchen,
an object is a cup or a plate, and an object can be red or
blue. For simplicity we adopt only one of each pair, with the
intuition that the negation of the given property implies that
its bivalent pair must hold. For example, if an object is not a
cup then it must be a plate.
Objects The Robocup@Home challenge deals with a fixed
set of household objects that are determined at the start of
the competition. This allows the teams time to train their
vision systems to be able to detect and distinguish between
these objects. This motivates the following formalisation.

We assume a fixed set I of individual objects, to which
we apply a unique names assumption. Intuitively, these
names identify the items that the robot is trained to recog-
nise. In our example scenario, these are two cups, one red
and one blue, and a red plate: I = {CR, CB , PR}. We intro-
duce the fluent Same(x, y) to express that two names refer
to the same real object, and allow a set of additional names
N = {O1, . . . , On} ensuring that these names refer only to
existing objects in the domain. In our example, we write

Same(Oi, CR, s) ∨ Same(Oi, CB , s) ∨ Same(Oi, PR, s)

for 1 ≤ i ≤ n. Same is axiomatised by enforcing that iden-
tical objects agree on all fluent properties F of the domain:

Same(x, y, s) ⊃ (F (x, s) ≡ F (y, s))

Primitive fluents The primitive fluents in our domain and
their meanings are as follows. InKitchen: the robot is in
the kitchen, Holding(o): the robot is holding an object,
OnTable(o): the object is on the kitchen table, Cup(o): the
object is a cup, Red(o): the object is red.
Primitive actions SwitchRoom: if the robot is in the
living room then it moves to the kitchen and vice-versa;
PickUp(o): pick up an object from the kitchen table.
Sensing In the Robocup@Home challenge the robot is
trained to recognise the pre-determined set of objects I . The
main sensing task is then to detect whether or not these spe-
cific objects are located on the kitchen table. This is encapsu-
lated by the sensing action SenseOT(o) that senses if object
o ∈ I is on the table. The SF(a, s) predicate, introduced in
the previous section, is used to axiomatise the act of sensing:

SF(PickUp(o), s) ≡ true
SF(SwitchRoom, s) ≡ true
InKitchen(s) ⊃ (SF(SenseOT(o), s) ≡ OnTable(o, s))
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Initial state In the initial state the robot is in the living
room (i.e., not in the kitchen) and is not holding anything:
¬InKitchen(S0) ∧ (∀x)(¬Holding(x, S0)).
Informing the robot Informing the robot about the opera-
tor’s belief in the state of the world is formalised outside of
the underlying action calculus at the meta-level and is sub-
sequently compiled into the initial state axioms within the
appropriate Situation Calculus logic.

Let f be a fluent literal. Then Told(f, S0), which we
abbreviate as Told(f), represents the act of the operator
informing the robot about the operator’s understanding of
the initial state of the world. In our example this would
be Told(Cup(O1)), Told(Red(O1)), Told(OnTable(O1)).
A set of operator commands T is consistent provided there
is no fluent f such that Told(f) ∈ T and Told(¬f) ∈ T .
Precondition axioms The robot can always switch lo-
cations: Poss(SwitchRoom, s) ≡ true; the robot can
only pick up an item when it is not already holding
an object and the item in question is on the kitchen
table: Poss(PickUp(o), s) ≡ (∀x)(¬Holding(x, s)) ∧
InKitchen(s) ∧ OnTable(o, s).
Successor state axioms The robot will be in the kitchen
as a result of switching rooms if it wasn’t already in the
kitchen: InKitchen(do(a, s)) ≡ (¬InKitchen(s) ∧ a =
SwitchRoom)∨(InKitchen(s)∧a 
= SwitchRoom); the robot
will be holding an object if it picks up the object or was
already holding the object: Holding(o, do(a, s)) ≡ a =
PickUp(o)∨Holding(o, s); an item will be on the table only
if it was previously on the table and has not been picked up:
OnTable(o, do(a, s)) ≡ OnTable(o, s)∧a 
= PickUp(o); ob-
ject type is persistent: Cup(o, do(a, s)) ≡ Cup(o, s); colour
is persistent: Red(o, do(a, s)) ≡ Red(o, s).

Approach

Our approach can be succinctly summarised as follows. Ev-
ery planning problem (request to achieve a goal) is consid-
ered a new reasoning problem. Two types of statements are
used to ascribe initial beliefs and a goal to achieve. They
are interpreted at the meta-level and are not part of the ob-
ject language. The first meta-level statement is Told(f(�x))
as described above to establish the agent’s initial beliefs.
The second is a request of the form Goal(∃s.φ(s)) where
φ(s) is a sentence expressing the goal to be achieved.
For example, the request Told(Cup(O1)), Told(Red(O1)),
Told(OnTable(O1)), Goal(∃s.Holding(O1, s)) asks the
agent to collect a red cup from the table. This results in
the specification of a reasoning about action problem in the
Situation Calculus extended with beliefs. In particular, the
request specifies what should be believed in the initial situ-
ation S0 and as such partially restricts the plausibility re-
lation pl(). However, our beliefs may be mistaken—there
is no red cup on the table—and as a result we need to for-
mulate an alternative course of action to get the best out of
the situation at hand. Which alternative course of action to
take is determined by preferences that are specified using a
meta-level preference relation <C . These preferences place
further restrictions on the plausibility of situations pl().

Preferences reflect the robot’s commonsense knowledge.

In our scenario, for example, the robot may prefer to fetch an
object that is of the same type as requested but of a different
colour, and most of all prefer to find an object in the room to
which it was sent.

OnTable <C Cup <C Red (1)

It is of course possible to conceive of a scenario with
several such individual preference relations, which is why
our approach assumes a given partial order among fluents.
Also it is possible to conceive of a scenario in which the
above preference for, say, non-red cups in the kitchen over
red non-cups elsewhere is reversed. The operator may be a
child building a colour collage and therefore assign greater
importance to the colour of the object than its type.

In reality, determining the best set of preferences would be
a complex task requiring the robot to combine subtleties of
natural language processing with specific knowledge about
the operator and the task the operator is trying to achieve.
Such considerations are beyond the scope of this paper, and
so we just presuppose a given commonsense preference or-
dering, represented by a partial order among fluent names.

Next, we directly compile the Told() statements plus an
ordering like (1) into a plausibility ordering over all the ini-
tial situations. Here, the initial situations encode all possi-
ble hypotheses of what the operator might have meant by
their commands. The commonsense preference is then used
to rank these hypotheses according to their plausibility.

In order to relate this preference ordering to the Told()
statements we introduce the notation 〈·〉 to extract the fluent
name from a fluent literal (e.g., 〈¬Cup(O1)〉 = Cup).
Definition 1 Let Σ be a Situation Calculus theory, B the
axioms for iterated belief revision in the Situation Calcu-
lus, I be the set of domain objects, N = {O1, . . . , On}
be a set of additional names, T be a set of consistent op-
erator commands and <C be a commonsense preference
ordering. Then (Σ∪B, T,<C) is a Situation Calculus the-
ory extended with belief and commonsense preferences such
that:

1. The initial situations are created by the axioms

(∃sσ)
⎛
⎝Init(sσ) ∧

∧
X∈I

∧
i∈σ(X)

Same(Oi, X, sσ)

⎞
⎠ (2)

for all mappings σ : I → 2{1,...,n} such that
• for all i ∈ {1, . . . , n} exists an x ∈ I with i ∈ σ(x);
• for all x, y ∈ I , x 
= y implies σ(x) ∩ σ(y) = ∅.

2. For every pair Init(sσ1
) and Init(sσ2

) from above:

pl(sσ1
) < pl(sσ2

)

iff both
(a) there is some Told(f(�x )) ∈ T such that Σ ∪ {2} |=

f(�x, sσ1) and Σ ∪ {2} |= ¬f(�x, sσ2) ; and,
(b) for every Told(f1(�x1)) ∈ T such that

Σ ∪ {2} |= ¬f1(�x1, sσ1) and Σ ∪ {2} |= f1(�x1, sσ2)

there is a Told(f2(�x2)) ∈ T such that 〈f2〉 <C 〈f1〉 ,

Σ ∪ {2} |= f2(�x2, sσ1
) and Σ ∪ {2} |= ¬f2(�x2, sσ2

)
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Part 1 creates all the initial situations. Intuitively, the map-
ping σ says which names are assigned to which real object;
so σ1(CR) = {O1, O3} means that O1 and O3 are con-
sidered the same as CR in situation sσ1

. Naturally, we cre-
ate only the mappings that constitute a valid way of assign-
ing object names from N to real objects from I .

Part 2 restricts the plausibility relation over initial situa-
tions. One initial situation is preferred to another whenever
(a) it assigns the value true to some told fluent and the other
situation assigns the fluent false; and (b) for every told fluent
that holds in the second but not the first situation, there is a
preferred told fluent for which it is the other way round.

From this formalisation of the scenario, we can establish
the fact that the robot will initially believe what it is told.
Proposition 1 Let Σ be a Situation Calculus theory, B the
axioms for iterated belief revision in the Situation Calculus,
T be a set of operator commands such that Σ∪{f(�x, S0) :
Told(f(�x)) ∈ T} is consistent, and <C be a commonsense
preference ordering. Then (Σ ∪ B, T,<C) is a Situation
Calculus theory extended with belief and commonsense pref-
erences such that for all Told(f(�x)) ∈ T :

(Σ ∪B, T,<C) |= Bel(f(�x), S0)

Proof (sketch): By construction from Axioms (1)-(5) and the
plausibility ordering set up in Definition 1. �
Plan Execution This formalism allows the robot to change
its beliefs about what it is told. In this paper we assume that
the robot has determined a plan and begun its execution. We
can therefore consider the robot’s changing beliefs with re-
gards to satisfying its goal of holding object O1 by consid-
ering the situation4

do([SwitchRoom, SenseOT(CR), SenseOT(CB),

SenseOT(PR),PickUp(O1)], S0)

Initially the robot believes that the object O1 refers to the
red cup CR . However when the robot arrives in the kitchen
it finds that there is only a blue cup on the table. Conse-
quently the robot changes its belief about O1 so that it now
refers to the blue cup CB . This scenario is visualised by
Figure 1 on the next page showing the possible situations
based on the robot’s beliefs and the plausibility relation.

In the extended example the robot arrives in the kitchen
to find both a blue cup and red plate on the table. It there-
fore has a choice, which it resolves based on its preference
for object type over colour (1), consequently modifying its
belief about O1 to again refer to the blue cup.

A Default Logic Approach

The Situation Calculus with beliefs provides an expressive
formalism for tackling the problem of agents being deliber-
ately misled and expected to use some basic commonsense
reasoning under these circumstances. Next we address the
problem of turning the theory into a practical implemen-
tation. To this end we adapt a recently developed exten-
sion of action logics with default reasoning (Baumann et al.
2010), which can be efficiently implemented using Answer

4do([a1, . . . , an], s)
def
= do(an, . . . , do(a2, do(a1, s)) . . .).

Set Programming (Gelfond 2008). The idea is to treat poten-
tially erroneous information as something that is considered
true by default but can always be retracted should the agent
make observations to the contrary. We extend the existing
approach by prioritised defaults that allow us to provide our
robot with preferences among different ways of remedying
a situation in which it has been deliberately misled.

Supernormal Defaults To begin with, we instantiate the
general framework of (Baumann et al. 2010) to the Situa-
tion Calculus and to a restricted form of default rules. Each
operator command Told([¬]f(�x), s) is translated into a su-
pernormal default of the form

: Holds(f(�x), s)
Holds(f(�x), s)

or
: ¬Holds(f(�x), s)
¬Holds(f(�x), s)

With these rules the robot will believe, by default, everything
it is told. For our running example we thus obtain these three
defaults about the initial situation:

δCup =
: Holds(Cup(O1), S0)

Holds(Cup(O1), S0)
δRed =

: Holds(Red(O1), S0)

Holds(Red(O1), S0)

δOnTable =
: Holds(OnTable(O1), S0)

Holds(OnTable(O1), S0)

A Situation Calculus default theory is a pair (Σ,Δ)
where Σ is as above and Δ is a set of default rules.

Priorities In a prioritised default theory (Brewka 1994),
the default rules are partially ordered by ≺, where δ1 ≺ δ2
means that the application of default δ1 is preferred over
the application of δ2 . For our purpose, we can map a given
commonsense preference ordering among fluent names di-
rectly into a partial ordering among the defaults from above.
For example, with the ordering given by (1) we obtain
δOnTable ≺ δCup ≺ δRed . A prioritised Situation Calculus de-
fault theory is a triple (Σ,Δ,≺) where (Σ,Δ) is as above
and ≺ is a partial ordering on Δ.

Extensions Reasoning with default theories is based on
the concept of so-called extensions, which can be seen as
a way of assuming as many defaults as possible without cre-
ating inconsistencies (Reiter 1980; Brewka 1994).
Definition 2 Consider a prioritised Situation Calculus de-
fault theory (Σ,Δ,≺). Let E be a set of formulas and de-
fine E0 := Th(Σ) and, for i ≥ 0,

Ei+1 := Th(Ei ∪ {γ | : γ
γ ∈ Δ, ¬γ 
∈ E})

Then E is an extension of (Σ,Δ,≺) iff E =
⋃

i≥0 Ei .
Let a partial ordering be defined as E1 ≺≺ E2 iff both

(a) there is : γ
γ in Δ such that γ ∈ E1 but γ 
∈ E2; and,

(b) for every : γ1

γ1
such that γ1 
∈ E1 but γ1 ∈ E2 there is

: γ2

γ2
≺ : γ1

γ1
in Δ such that γ2 ∈ E1 but γ2 
∈ E2 .

Extension E is a preferred extension of (Σ,Δ,≺) iff there
is no E′ such that E′ ≺≺ E . Entailment (Σ,Δ,≺) |≈ φ is
defined as φ being true in all preferred extensions.

In our running example, when initially the robot has no
information to the contrary it can consistently apply all de-
faults, resulting in a unique preferred extension that entails

Holds(Cup(O1), S0) ∧ Holds(Red(O1), S0)∧
Holds(OnTable(O1), S0)
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pl = 0 pl = 0 pl = 1 pl = 1 pl = 2 pl = 2 pl = 2 pl = 2

Same(O1, CR)
OnTable(CR)
OnTable(CB)
¬InKitchen

Same(O1, CR)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
OnTable(CR)
OnTable(CB)
¬InKitchen

Same(O1, CB)
¬OnTable(CR)
OnTable(CB)
¬InKitchen

Same(O1, CB)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CR)
¬OnTable(CR)
OnTable(CB)
¬InKitchen

Same(O1, CR)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

SwitchRoom

InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen

SenseOT(CR)

SenseOT(CB)

PickUp(O1)

Same(O1, CB)
Holding(O1)¬OnTable(CB)

InKitchen

Figure 1: The robot is told to pick up the red cup from the table, but finds only a blue cup. For succinctness, details of the red
plate and the status of the persistent fluents Cup and Red are omitted. Furthermore, only the accessibility relations (dotted
lines) for the actual situation (fourth from the left) are shown. The transition of situations based on actions are indicated by the
solid vertical lines. Values for the plausibility relation are assigned to the initial situations based on the preferences. The two
initial situations in which the robot believes that it is going to pick up the red cup on the table are the most preferred (pl = 0).
The next preferred are those in which the robot believes that it is going to pick up the blue cup on the table (pl = 1). Finally,
the least preferred options are situations in which the robot believes that the item to pick up is not on the table (pl = 2).

Based on these default conclusions the Situation Calculus
axioms entail the same plans for a given goal as those for the
Situation Calculus extended with belief and commonsense
preferences. But suppose that the robot enters the kitchen
and observes what is indicated in Figure 1, that is,

Same(O1, CR, S) ∨ Same(O1, CB , S)
Holds(Cup(CR), S) ∧ Holds(Red(CR), S)
Holds(Cup(CB), S) ∧ ¬Holds(Red(CB), S)
¬Holds(OnTable(CR), S) ∧ Holds(OnTable(CB), S)

where S is the situation after SwitchRoom followed by
SenseOT(CR) and SenseOT(CB). Disregarding priorities
for now, there are two extensions, characterised by

{Same(O1, CR, S),¬Holds(OnTable(O1), S)} ⊆ E1

{Same(O1, CB , S),¬Holds(Red(O1), S)} ⊆ E2

However, given the priorities from above, only E2 is a pre-
ferred extension, triggering the robot to pick up the blue cup.

In the second case of the scenario, the robot further senses
that there is also a red plate on the table. In this case there
will be a third extension E3 such that

{Same(O1, PB , S),¬Holds(Cup(O1), S)} ⊆ E3

However, as with the first case, E2 is still the only preferred
extension and therefore the robot selects the blue cup.

Implementation Answer Set Programming (ASP) (Gel-
fond 2008) is well-suited for efficiently implementing non-
monotonic reasoning formalisms like the one developed in
the previous section. This is because extended logic pro-
grams can be seen as special kinds of default theories (Gel-
fond and Lifschitz 1991). To put the default logic approach

of this paper into practice, we make use of this correspon-
dence and transform a given prioritised Situation Calcu-
lus default theory (Σ,Δ,≺) into an answer set program
PΣ,Δ,≺ , provided the first-order theory Σ is sufficiently re-
stricted to permit this transformation. Using an off-the-shelf
ASP solver,5 we can then figure out whether a formula is en-
tailed by the default theory via querying the answer set pro-
gram. There is insufficient space to treat the exact transfor-
mation in detail, so we only give the underlying ideas here.
Step 1. We transform the prioritised Situation Calculus de-
fault theory (Σ,Δ,≺) into a Situation Calculus default the-
ory (Σ≺,Δ≺) where the preferences have been encoded at
the object-level (Delgrande and Schaub 2000). This is done
by explicitly keeping track of default δ’s meta-level applica-
bility ok(δ) and whether it was applied (ap(δ)) or blocked
(bl(δ)). For example, δCup and δRed are transformed into

ok(δCup) : Holds(Cup(O1), S0)

Holds(Cup(O1), S0) ∧ ap(δCup)

ok(δCup) ∧ ¬Holds(Cup(O1), S0) :

bl(δCup)

ok(δRed) : Holds(Red(O1), S0)

Holds(Red(O1), S0) ∧ ap(δRed)

ok(δRed) ∧ ¬Holds(Red(O1), S0) :

bl(δRed)

The preference between the defaults is enforced by state-
ments like (ap(δCup)∨bl(δCup)) ⊃ ok(δRed), effectively say-
ing that δRed can only be applied once it is clear whether the
more preferred default δCup has been “processed”.
Step 2. We instantiate the defaults from Δ≺ and the axioms
from Σ≺ for the given Situation Calculus signature. This
yields a propositional default theory.
Step 3. We rewrite the ground instantiation of Σ≺ into a set
PΣ≺ of extended logic program rules.

5Available at http://potassco.sourceforge.net.
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Step 4. We transform Δ≺ into a set of logic program rules.
A default of the form p:q

r1∧r2
becomes ri ← p, not −q for

i = 1, 2; a rule p∧q:
r is turned into r ← p, q. Here not is

the usual negation as failure of normal logic programs; −q
is a new predicate symbol standing for the (classical) nega-
tion of q (Gelfond and Lifschitz 1991). The resulting rules
together with PΣ≺ now form the corresponding answer set
program PΣ,Δ,≺ of the initial prioritised Situation Calculus
default theory (Σ,Δ,≺).

Equivalence of the Two Approaches

We are now in a position to state the central result of
this paper, which says that our prioritised Situation Cal-
culus default theories are suitable approximations of the
Situation Calculus extended with belief and common-
sense preferences. Unfortunately, lack of space prevents
us from giving a rigorously formal account. Generally
speaking, the latter is more expressive for two reasons.
First, it allows to infer meta-statements about beliefs, as in
Bel(Bel(Red(O1), S0), do(SwitchRoom, S0)). Second, all
possible situations are ranked according to pl(), thus al-
lowing to draw conclusions about their relative ordering,
whereas in prioritised default logics the non-preferred ex-
tensions are not considered for entailment. However, neither
of these two features is relevant for the problem at hand, and
we can prove the following.
Theorem 1 Let Σ be a Situation Calculus theory, B
the axioms for iterated belief revision in the Situa-
tion Calculus, T a set of consistent operator com-
mands, <C a commonsense preference ordering, Δ,≺
a set of default rules and an ordering as explained
above, a1, . . . , an a sequence of actions, and SFn :=
{[¬]SF (a1, S0), . . . , [¬]SF(an, do([a1, . . . , an−1], S0))} a
set of literals describing a particular sequence of sensing
results. Then

(Σ ∪B ∪ SFn, T,<C) |= Bel(φ, do([a1, . . . , an], S0))
iff (Σ ∪ SFn,Δ,≺) |≈ Holds(φ, do([a1, . . . , an], S0))

Proof (sketch): By induction on the number of actions n . If
n = 0, by Proposition 1 the robot believes all operator com-
mands; in a similar way it can be shown that there is a unique
preferred extension which entails the exact same statements
about S0 that are true in all most plausible initial situations.
For the induction step, if an+1 is a physical action the claim
follows from the fact that both axiomatisations share the
same basic action theory. If an+1 is a sensing action, then
any possible situation in do([a1, . . . , an], S0) that contra-
dicts [¬]SF (an+1, do([a1, . . . , an, an+1], S0) is no longer
possible in do([a1, . . . , an, an+1], S0); likewise, any exten-
sion of (Σ∪SFn,Δ,≺) that contradicts this sensing literal
is no longer an extension of (Σ∪ SFn+1,Δ,≺). The claim
follows from the structural equivalence of the construction
of the plausibility ordering in Definition 1 (Item 2) and the
construction of preferred extensions in Definition 2. �

Conclusions

We developed an account of how a reasoner faced with an
unachievable goal should nevertheless do its best to salvage
the situation by relying on its preferences. We formalised

our solution using an extension of the Situation Calculus to
handle beliefs. This extension, however, has never been im-
plemented and the naive implementation is computationally
infeasible. As a result, the other significant contribution of
this paper was a mapping into default rules that allow for an
efficient implementation. As a motivating example we used
a scenario from the RoboCup@Home rulebook.

An alternative approach would be to consider goal revi-
sion (Shapiro, Lespérance, and Levesque 2005). Proposals
like this one, however, modify goals at the explicit request
of an agent and do not consider that the goals themselves
may be unachievable. In our approach, the goal cannot be
achieved and we argue that this is more accurately dealt with
by reasoning about the robot’s beliefs/expectations.

Finally, it should be noted that the formalism proposed
here is not simply intended as a theoretical exercise. The
authors are actively engaged in translating these results into
high-level reasoning modules for the ROS (Quigley et al.
2009) robotics platform.
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