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Abstract

We present a novel computational method for advice-
generation in path selection problems which are difficult for
people to solve. The advisor agent’s interests may conflict
with the interests of the people who receive the advice. Such
optimization settings arise in many human-computer applica-
tions in which agents and people are self-interested but also
share certain goals, such as automatic route-selection sys-
tems that also reason about environmental costs. This pa-
per presents an agent that clusters people into one of several
types, based on how their path selection behavior adheres to
the paths preferred by the agent and are not necessarily pre-
ferred by the people. It predicts the likelihood that people
deviate from these suggested paths and uses a decision the-
oretic approach to suggest modified paths to people that will
maximize the agent’s expected benefit. This technique was
evaluated empirically in an extensive study involving hun-
dreds of human subjects solving the path selection problem
in mazes. Results showed that the agent was able to outper-
form alternative methods that solely considered the benefit to
the agent or the person, or did not provide any advice.

Introduction

This paper considers the problem of path selection in
human-computer applications in which people and comput-
ers are self-interested, but also have shared goals. For exam-
ple, consider an automatic system for suggesting commut-
ing routes to a human driver. Both participants in this set-
ting share the goal of getting the driver from home to work
and back. However, each participant also has its own incen-
tives. The driver wishes to choose the route that minimizes
the commuting time, while the computer may prefer taking
a longer route that emits fewer pollutants, or does not pass
near schools and playgrounds.

The paper proposes a novel model, User Modeling
for Path Advice (UMPA), for computer-generated advice
for such route-selection problems which explicitly reasons
about the extent to which people deviate from a given path.
This information is then used to suggest modified paths
which are beneficial to the computer agent while still likely
to be considered by people. It focuses on route-selection
problems that are too large for people to solve optimally,
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and in which the agents’ utilities may significantly differ
from those of people. Our study includes a 2-participant
task setting for choosing a path on a large colored grid that is
analogous to the route-selection problem. The person’s sole
incentive is to choose the shortest path, while the agent’s
incentives also include the number of color changes in the
path. Choosing a path on the grid corresponds, for exam-
ple, to selecting a commuting route between home and work.
The colors on the grid represent constraints, such as environ-
mental and social considerations. Switching between col-
ors on the path represent the violation of one of these con-
straints. The person’s preferences solely consider the length
of the route, while the agent’s preferences take into account
both the length of the route as well as the number of con-
straint violations.

Our approach defined a deviation (or ”cut”) from a sug-
gested path as an alternative segment for connecting two lo-
cal points in the original path. A cut may improve the path
from the user point of view by shortening it, but may de-
crease the benefit of the agent. For any such suggested path,
UMPA generates the set of all cuts, corresponding to mod-
ified, shorter paths that are more likely to be accepted by
people. We used a standard feature-based supervised learn-
ing approach to estimate the likelihood that people follow
these modified paths when suggested by computer agents.
We present an agent-design that clusters people’s route se-
lection behavior into several types: those that are likely to
follow suggested paths that are more beneficial for the agent,
those that are likely to deviate and follow modified paths,
and those that are likely to ignore suggested paths. It uses
a decision theoretic approach to suggest modified paths that
maximize the agent’s utility given its model of people’s path
selection behavior.

We evaluated this agent in an extensive empirical study
of more than 700 human subjects solving the path selection
problem in 4 different mazes. The results showed that an
agent using our approach was able to outperform agents us-
ing alternative approaches for suggesting paths that solely
consider the agent’s utility, the person’s utility, or do not
provide advice. In addition, people were satisfied by UMPA
advice.
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Related Work

Route selection (or path selection) has become one of the
most prominent applications of computer assisted guidance
(see a survey at (Hipp et al. 2010)). In fact, route guid-
ance systems using GPS have become pervasive over the
years, thanks to the significant research effort in address-
ing both the cognitive limitations and the range of individual
preferences of human users (e.g. (Duckham and Kulik 2003;
Park et al. 2007)).

Many of the challenges in the development of route guid-
ance systems stem from the high variance across individ-
uals of the evaluation and the acceptance of route advice.
This variance makes it important to tailor route advice and
guidance to a specific user. To this end, a wide range of
machine learning techniques are used to capture and uti-
lize user routing preferences (e.g. (Park et al. 2007)).
We, on the other hand, use a machine learning approach to
model user’s attitudes towards advice which will increase
the agent’s benefit. There was some work on driver accep-
tance of unreliable route guidance information (Hanowski
et al. 1994). Antos and Pfeffer (Antos and Pfeffer 2009)
designed a cooperative agent that uses graphical models to
generate arguments between human decision makers and
computer agents in incomplete information settings. They
use a qualitative approach that does not model the extent
to which people deviate from computer generated advice.
Other works have demonstrated a human tendency to accept
advice given by an adversary in games (Kuang et al. 2007)
and some theoretical analysis suggests this behavior to be ra-
tional (Rayo and Segal 2010). To some extent, these results
were used in the framework of large population traffic ma-
nipulation (either by explicitly changing the network topol-
ogy or by providing traffic information, e.g. (Hui et al. 2009;
Chorus et al. 2006)). However, to the best of our knowledge,
we are the first to study the combination of human choice
manipulation and the personal route selection problem in a
given network.

Modeling The Path Selection Problem

To allow a formal discussion of the path selection problem,
we employ a maze model. We assume that a user has to solve
the shortest path problem within a rectangular maze either
by constructing a path or by augmenting a path suggestion.
More formally, we define a maze M as a grid of size n×m
with one vertex marked as the source S, and another vertex
as the target T . Each vertex v is associated with a label
c(v), that we will refer to as the color of v. We will denote
the white color or label number 0 as an obstacle. x(v) and
y(v) denote the horizontal and the vertical grid coordinates
of the vertex v, respectively. We assume that the user can
move along the grid edges in the four standard directions:
up, down, left or right. A sequence of vertexes that does not
include an obstacle and can be traversed moving the four
standard directions is a valid path. Formally, a valid path π
of length l(π) (or simply l), is defined by a set of vertexes:
v1, v2...vl so that ∀1 ≤ i ≤ l, c(vi) �= 0 and ∀1 ≤ i <
l, (|x(vi)−x(vi+1)| = 1∧y(vi)−y(vi+1) = 0) or (|y(vi)−
y(vi+1)| = 1 ∧ x(vi) − x(vi+1) = 0). In the remainder of

Figure 1: Path selection problem visualized in a small maze

the paper, to distinguish between vertexes of different paths,
we will denote them by the path’s name with a superscript:
e.g. vertexes of a path π will be denoted by π1, ..., πl. A
valid path will be called a full path if π1 = S and πl = T ,
i.e. it begins at the start and ends at the target node, thus
solving the maze.

We model the path selection problem as a user’s task to
find the shortest full path through the maze. Formally, we
assume that user’s cost of a path is equal to its length, i.e.
π is uu(π) = l(π). In contrast, the advisor agent’s cost de-
pends on both the length of the path and the number of color
switching along the path. Formally, given a color switch-
ing cost W , the agent cost ua of a full path π is given by:
ua(π,W ) = l(π) +W ·∑1≤i<l 1{c(πi) �= c(πi+1)}. We
term a full path which minimizes ua the agent path, and a
full path which minimizes uu is termed the shortest path.
Notice, that there are multiple valid paths through a maze,
and it is possible that there is more than one full path as
well. We therefore define the average cost of the agent with
respect to a multi-set Ω = {π1, π2, ..., πk} of valid paths
as ua(Ω) = 1

k

∑
0≤i≤k ua(πi). Such a multi-set may be

formed, for instance, by an experimental data set, where dif-
ferent users have selected different paths πi. Furthermore,
we do not assume that a user is capable of finding the short-
est path, and allow the set Ω to include any full paths.

Now, in addition to the maze grid, its color labeling, and
the start and finish nodes, we also allow for a secondary la-
beling of a particular full path through the maze. This label-
ing represents the advised path of the agent to the user. We
assume that the user is aware of this labeling prior to solving
the path selection problem. In fact, the advised path is part
of the input to the path selection problem. When a user is
given a maze (with or without an advised path) his/her goal
is to solve the maze by finding the shortest full path from S
to T . However, due to the complexity of the maze, finding
said shortest path may not be trivial or clear from looking
at the maze during the limited amount of time given to the
user. Therefore, the user may find it beneficial to take some
advice provided to him in order to choose his route. In turn,
the best advised path problem is: given a maze M , find a
full path to be given as advice so that the set of likely user
solutions, Ω, will minimize the average agent cost, ua(Ω).

Figure 1 visualizes the formal setting in a small maze.
In the figure, obstacles are represented by the white color,
while the start and the end nodes are black. In turn, the
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dotted nodes represent the advised path, while the crossed
nodes are a valid (partial) path selected by the user.

UMPA approach

Given a maze M , we employ a three-stage process to solve
the best advised path problem: (i) clustering users into one
of three types depending on the extent to which their path
selection behavior adheres to suggested paths that may be
more beneficial to the agent than to themselves, then pre-
dicting the likelihood that a user will belong to one of these
three clusters;(ii) predicting the likelihood that people devi-
ate from a suggested path; (iii) generating the advised path
using a decision theoretic approach which utilizes the pre-
diction from the first two stages in order to compute the ex-
pected benefit of the agent from a given path.

We assume the availability of training data for the predic-
tion stages. Consider a set M of mazes where M �∈ M.
UMPA is given a training set, Ψ, of tuples (M ′, π, τ, α) and
(M ′, τ), where: M ′ ∈ M is a maze; π is an advised path
through the maze; α is a binary variable indicating whether
the user considers π as a good solution or not (α equal 1 or 0
respectively); and τ is the solution selected by a human user,
who was presented with M ′ and π.

Modeling diversity in people’s reactions

UMPA clusters the users into three types: Advice followers,
Advice ignorers and Baseline users. It labels the user of each
example of Ψ with one of the types and denotes the labeled
set of examples Ψl.

Advice followers are users who follow the advised path
without any modification regardless of the quality of the ad-
vice and even when they think that the advice is not a good
solution. We can only be sure a subject is an advice fol-
lower if he claims the advice wasn’t good but followed it
exactly; therefore, if he was given any other advice (regard-
less of how good it was from his point of view) he is antic-
ipated to follow it exactly as well. However, if he claimed
the advice was good, he might have just taken the advice be-
cause that it seemed good to him. The user of an example
(M ′, π, τ, α) ∈ Ψ is labeled as Advice followers if τ = π
and ,α = 0.

However, most users would at least attempt to improve
upon the advised path, or simply ignore it entirely. In order
to characterize these users we will introduce the concept of
a cut and a baseline solution.

Given two vertices ,πi and πi′ , of an advised path π, any
path τ between these two vertices (that otherwise does not
intersect with π) is termed a cut. Although there may be an
exponential number of cuts, certain human cognitive tenden-
cies (see e.g. (Duckham and Kulik 2003; Richter and Duck-
ham 2008)) allow us to bound the maximal cut length. All
users who deviated from the advised path only by taking cuts
were considered as users who used the advice as a baseline
solution, and therefore termed Baseline users.

More formally, given a valid path π we define a cut τ of
length l to be a valid path such that ∃i, τ1 = πi and ∃i′ >
i, τ l = πi′ and ∀1 < i′′ < l, �j, πi′′ = πj . The sequence
of πi, ..., πl will be called the original segment of cut τ and

will be denoted by o(τ). Figure 1 shows an example for
a cut marked by crossed nodes. In turn, using the defini-
tion of a cut we define a baseline (solution) as follows. Let
L1 ∈ N and L2 ∈ R+. Let M be a maze with a marked
advised path π. A solution path η uses the advice π as a
baseline subject to parameters L1 and L2 if there are cuts of
π, τ1, ..., τk, with their original segments o(τ1), ..., o(τk) re-
spectively, such that ∀i, l(τi) < L1 and l(τi) < L2 · l(o(τi))
and there are sequences (possibly empty) σ1, ..., σk+1,
such that π = σ1, o(τ1), ...σk, o(τk), σk+1 and η =
σ1, τ1, σ2, τ2...σk, τk, σk+1. The user of an example
(M ′, π, τ, α) ∈ Ψ is labeled a Baseline user if τ is a baseline
solution of M ′ with respect to π.

Finally, we define the Advice ignorers as all users who are
neither Baseline users nor Advice followers and the relevant
examples of Ψ were labeled accordingly. It is important to
understand that being an advice follower does not depend on
the specific maze and advice. However, deciding whether
to ignore an advice or use it as a baseline depends on the
specific maze and advice.

Estimating advice cost

Given a maze M and a possible advice π, UMPA tries to
estimate using Ψl the expected utility for the agent by pre-
senting users with π.

The first step is to identify the multi-set Ω(π) – the multi-
set of solutions produced by users in response to the advised
path π - and estimate ua(Ω(π)).

Notice that it is relatively easy to calculate the contribu-
tion of Advice followers.These are users that, independent
of the maze or the particulates of the advised path π, always
fully comply with π. Therefore, their contribution to ua(Ω)
will always be l(π) multiplied by the ratio of Advice follow-
ers.

However, the contribution of the Advice ignorers and the
Baseline users) is more complex. To estimate it, we need to
understand how frequently the available cuts at a node πi of
π are used.

Estimating the Probability of a User Taking a Cut
Given a possible advice π, UMPA estimates the probabil-
ity of a user taking a specific cut τ at a given vertex πi. We
denote this probability as p(M,π, πi, τ) and use p(τ ) when
the other parameters are clear from the context. UMPA as-
sumes that the function p is a linear combination of three cut
features: cut benefit, cut orientation, and cut greediness (see
e.g. (Hochmair and Karlsson 2005)).

Cut Benefit measures the relative reduction in steps be-
tween the cut and the original path segment. Formally,
l(τ)−l(o(τ))

l(τ) .
Cut Orientation captures the tendency of human users to

continue with a straight line motion, and its value depends
on whether the cut or the original segment conformed to this
tendency. The reference motion is the edge between the cut
divergence node πi and its predecessor in the advised path
πi−1. If the cut deviates from the advice by remaining in
the same direction as the edge (πi−1, πi) we say that the cut
has positive +1 orientation. Otherwise, if the original path
segment (πi, πi+1) is similarly directed to (πi−1, πi), we
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say that the cut has negative −1 orientation. Otherwise, the
cut’s orientation is 0 (neutral). For example in Figure 1 the
value of the orientation of the cut marked by x’s is −1 since
the advised path continues straight and the cut turns left.

Cut Greediness measures how greedily the path attempts
to move towards the target node’s horizontal and vertical co-
ordinates. We express this by assigning a positive unit value
to a move that closes the gap from the target node, and a neg-
ative (−2) value to a move that increases the gap.1 The total
path value is calculated as a discounted sum of movements
along the path. We omit rigorous the formal definition of
greediness due to space limitations.

Given that there is a very large number of cuts, it is al-
most impossible to collect enough examples in Ψ to learn
the weights of p’s features directly. Therefore, this estima-
tion process was divided into two steps. First, UMPA tried
to estimate the probability, r(M,π, πi, τ), that a cut τ will
be taken by a user at vertex πi, assuming that τ is the only
possible cut at πi. It was assumed that r is a linear combi-
nation of the three cut features described above, similar to
p. To compute the weight of r’s features, UMPA created a
training set of the form (M ′, π, πi, τ, prop(πi) where τ is a
cut of π that starts at πi and is the cut that was taken at πi by
the highest number of users according to Ψ. prop(πi) is the
proportion of users that visited πi and deviated there taking
any cut. Using these examples, the weights were estimated
using linear regression.

Next, r after normalization is used to compute p. For any
πi, it was assumed (based on the way r was learned) that
the probability to deviate in πi across all cuts is equal to
the highest r value of a cut starting at πi. This probability
is distributed across all possible cuts, starting at πi, propor-
tional to their r value. We omit the algorithm due to space
restrictions.

Estimating the Utility Contribution of Baseline Users
Having the estimated probability for each cut, an estimation
for the agent utility of the baseline users, denoted as b(π),
can be calculated using the following algorithm:
Input: A maze, with an advised path π.
Output: EstCost – estimated contribution to agent cost
1: EstCost ← ua(π).
2: vec ∈ Rl(π) ← �0. vec(0) = 1.
3: for each i < l(π) do

4: for each cut τ s.t. τ1 = πi do
5: {Predict the fraction of users who take the cut}

a(τ) ← (1 +
∑

j<i vec[j]) · p(τ)
6: EstCost ← EstCost+ (ua(τ)− ua(o(τ))) · a(τ).
7: {Update mass at cut entry point.}

vec[i] ← vec[i]− a(τ)
8: {Update the cut exit point}

vec[j|πj = τ l(τ)] ← vec[j] + a(τ)
9: return EstCost.

Intuitively, the algorithm’s basic assumption is that the set
of users forms a continuous unit mass. The algorithm then
traces the flow of this unit of mass along different cuts that
diverge (or converge) at vertices along the advised path.

1This assignment’s rational follows Tversky and Kahneman’s
results that showed losses to be weighed twice as strongly as gains.

In more detail, the algorithm begins by stating that, even
if all users are Advice followers, their contribution will be at
least ua(π) and initializes the utility estimate by this value.
Then the vector vec, which lists for each vertex along the
path π the proportion of people who have reached it, is ini-
tialized by placing proportion 1 (all people) at the start node
and zero (no people) at all other nodes along the path. The
algorithm then systematically propagates the mass of peo-
ple along the path and the path’s cuts. At every node along
the path, the mass of people split – some continue along
the path to the next node along π, while others take one of
the available cuts. Specifically, they split proportionately to
the probability of users to adopt a particular path segment.
Those who choose a cut τ are advanced and added to the
mass of people who reach the end point of that cut.

A straightforward implementation of the algorithm will
yield complexity of O(#cuts · l(π)). However, by saving∑

j<i vec[j] in each iteration the algorithm complexity can
be reduced to O(#cuts+ l(π)).

Assessing Proportions of User Types Based on the litera-
ture on the subject (see e.g. (Hochmair and Karlsson 2005)),
we presume that the proportion of Baseline users for a given
advice π is strongly characterized by the overall greediness
value of π, denoted g(π). Given Ψl UMPA generates a set
of tuples π′, g(π′), prop(π′) where prop(π′) are the propor-
tion of users in Ψl that received the advice π′ and are la-
beled as Baseline users. Denote by AvgGV (StdGV ) the
average (standard deviation) of the g(π′)s and by AvgBU
(StdBU ) the average (standard deviation) of prop(π′)s. Fi-
nally, we estimate the proportion of Baseline users to be:
pb(π) =

g(π)−AvgGV
StdGV · StdBU +AvgBU ,

As we have noted before, the Advice follower users have
followed the advised path even if they did not evaluate it as
a good path, which allowed us to assume that the propor-
tion of Advice follower users is constant across all advised
paths. We have extracted this proportion from Ψl, and in the
following we denote it by E. The remaining proportion of
users 1 − E − pb(π) are assumed to be the Advice ignorer
users. This latter set of users deviates from the advised path
so much that it is possible to assume that they would have se-
lected the same path with or without any advice given. Let
Ω∅ = {τ |(M, τ) ∈ Ψ}, i.e the set of paths in Ψ selected
by users who did not receive any advice. We assume that
the contribution of Advice ignorer users to the estimated ex-
pected agent cost is N = ua(Ω∅).

Given the above proportion and utility contribution esti-
mates, we can compose the final heuristic estimate of the
advised path cost e(π), that is the expected agent cost across
all human generated path solutions in response to π:
e(π) = pb(π) · b(π) + (1− E − pb(π))N + E · ua(π)

Generating Advice

Given a maze M we view the maze as a graph, and use the
A∗ search algorithm to find a path π from the start node S
to the target node T with the minimal expected cost e(π).
We do not use node recognition, therefore the maze is really
spread out as a tree. When given a vertex v in the tree, there
is a unique path from S to v, denote this path as θ. The cost
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function for node v is e(θ) and we use the minimal agent
cost of traveling between v to T as the heuristic function.
The minimal agent cost to travel from each vertex to T can
be efficiently calculated for all vertexes using the Dijkstra’s
algorithm starting at T .

To limit the manipulation effect of UMPA, the search con-
siders only paths with cuts where the agent does not gain
from the user’s taking them. That is, the agent prefers the
user to take the advised path and does not benefit from his
deviation. Formally, UMPA considers only paths such that
for any suffix τ = πi · · ·πl(π), i ≥ 1 holds e(τ) ≥ ua(τ).
If A∗ stops with a path that does not satisfy the condition
above it will be rejected, and A∗ will be forced to continue
the search.

Experimental Evaluation

We have developed an online system that allows people to
solve path selection problems in a maze. It can be accessed
via http://cupkey.com/selfmazeplayer.swf. The maze design
was chosen to remove from the experiments all effects of fa-
miliarity with the navigation network. We also chose a maze
design that does not directly resemble a street map in order
to avoid the effects of city navigation experience. Further-
more, every human subject was presented with a single in-
stance of the problem in order to exclude effects of learning
or trust. All of our experiments were run using the Ama-
zon’s Mechanical Turk service (Amazon Mechanical Turk
2010). Participation in our study consisted of 701 subjects
from the USA: 383 females and 298 males. The subjects’
ages ranged from 18 to 72, with a mean of 37.

Experimental Setup

Each experiment consisted of a single-colored maze panel
similar to the one depicted in Figure 1. A single panel was
shown to each participant. In some panels an advised path
was also presented (as described below). Subjects were in-
formed that the advised path was calculated both to reduce
its length and the number of color switches, although they
were not given color switching cost W .

The subject’s task was to select the shortest path through
the Maze. As a stimulus all subjects were guaranteed a small
monetary bonus inversely proportionate to the length of the
path they have selected. A set of questions was presented
both prior to and following the task execution. The questions
prior to the task execution were designed to verify under-
standing of the task. The post-task questions were designed
to assess the general attitude towards computer advice and
the subjective evaluation of the advised path quality.

We have used four distinct mazes, M1,...,M4, all with a
grid size of 80× 40. Their complexity was chosen such that
users would find it difficult to compute the shortest path in
the limited time allotted for the task. In all the experiments
we have used the color switch weight of W = 15.

For each maze Mi, i = 1, .., 4, we used the other mazes
for the training data, i.e., Mi = {M1, ...,M4} \ {Mi} and
collected the examples of Ψi in Mi. That is, UMPA gener-
ated the advice for Mi after performing its learning process
over Ψi, i.e., the examples taken from the other mazes. Fi-

nally, we have used the following settings of UMPA param-
eters: the length of a cut was bound to L1 = 40; a cut’s po-
tential increase in length to L2 = 20% of the corresponding
original segment; finally, the discount factor in the greedi-
ness feature calculation was set to δ = 0.95.

Before starting the UMPA evaluation we first had to de-
termine the basic algorithm with which to compare it. There
two extreme cases. In one extreme we can look for advice
that will be generated only from the point of view of the user,
i.e., the one that minimizes the length of the path. In the
other extreme, there is the path that is generated only from
the point of view of the agent, i.e., the one that minimizes
the agent’s cost ua. While we expect that the acceptance of
the first advice by users will be high, the number of Advice
Ignorers will be small, and the probability of deviation also
will be small, this path may yield high cost to the agent. On
the other hand, when providing the second advice we run the
risk that most of the users will ignore it, while the ones that
will accept it will yield the highest agent benefits. Finally,
we should consider not giving advice at all. The implemen-
tation of the three options is straightforward and we name
them as follows:

• No advice (silent), where no advice was present in the
maze panel,

• Shortest, i.e. the shortest path through the maze was pre-
sented as the advised path,

• Agent path, i.e. an optimal path with respect to ua was
presented as an advised path.

After identifying the basic algorithm we considered the
following questions:

• What is the effectiveness of UMPA estimation methods?

• Is UMPA significantly better than the basic algorithm?

• If UMPA is better than the basic algorithm from the
agent’s point of view, will it, in return, decrease the users’
benefits and satisfaction? Or does UMPA yield mutually
beneficial results compared to the basic algorithm?

Experimental Results

Comparisons between advice type characteristics were per-
formed using Analyses of Variance (ANOVA). ANOVA is a
method of analysis used to determine the level of statistical
significance when dealing with more than two groups.

Basic approaches We calculated the effects of Silent,
Shortest and Agent advice on the average of agent cost
across selected paths by users given the advice in our ex-
periments. The corresponding three columns on the left of
Table 1 summarize the results (the lower the better). For all
maze panels Agent advised paths have resulted in signifi-
cantly (with p-value p < 0.001) lower cost than the Shortest
advice and the Silent advice.

We have also studied the statistics of the advice effect on
the user costs (see two right most column of Table 1 ). As
expected, the users costs from the Shortest advice were sig-
nificantly lower than in the Agent and Silent advice cases.
However, we wanted to check whether giving advice that
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Table 1: Average Costs of Basic Advice
Average Agent Cost Average User Cost

Maze Agent Shortest Silent Agent Shortest Silent
M1 580.9 620.5 643.8 163.5 142.6 161.5
M2 475.9 544.9 515.7 146 133.4 137.6
M3 454.1 517.4 557.3 133.5 120.3 133.1
M4 495.8 555.4 522.1 135.4 127.1 138.8

Mean 501.68 559.55 559.73 144.6 130.85 142.75

Table 2: Comparative Average Costs for UMPA
Average Agent Cost Average User Cost

Maze UMPA Agent UMPA Agent
M1 531.8 580.9 156.5 163.5
M2 475.9 475.9 146 146
M3 477.7 454.1 132.7 133.5
M4 454.4 495.8 134.1 135.4

Mean 484.95 501.68 142.33 144.6

is the best for the agent decreases the user benefits com-
pared to not giving any advice at all. The results were mixed
and no significant difference was found between Agent and
Silent. That is, while Agent advice improved significantly
the agent’s utility, it did not harm significantly the user’s
utility. So we concluded that UMPA should be compared
to Agent advice.

UMPA Evaluation The first step in our UMPA evaluation
was to verify the effectiveness in computing p(M,π, πi, τ).
We found a high correlation (0.77) between the p of a cut
and the fraction of users who took it when reaching the cut’s
divergence node. High correlation (0.7) was also found be-
tween the fraction of Baseline users given advice π and
pb(π). Finally, we obtained a high correlation (0.76) be-
tween the estimated value of advice e(π) and the average
value of the actual selected path in response to advice π in
our experiments. This is significant since the correlation be-
tween the agent cost of π itself and the empirical average of
the selected path was only 0.06.

We then compared UMPA and Agent with respect to the
average of agent utility across selected paths by users given
the UMPA advice and the Agent advice in our experiments.
Consider the two corresponding columns on the left of Ta-
ble 2 (the lower the better). On average, UMPA outper-
formed Agent, resulting in significant lower costs (p <
0.05).

We also compared the effect of UMPA and Agent advice
on the user cost (see the two right most columns of Table 2).
To our surprise, the average results of the users that were
given UMPA advice were significantly better (lower cost)
than the users that were given the Agent advice (p < 0.05).
In other words, when comparing the UMPA and Agent-
advised path generation techniques, both the average utility
of the agent and the average utility of human users would
increase significantly when using UMPA compared to the
Agent advice. So UMPA manipulative advice is mutually
beneficial as compared to Agent advice.

Finally, we considered the subjective view of the users on
the advised path. After finishing the task we presented them
with the following two questions: (i) ”How good was the
advice given to you by the system?” and (ii) ”How much
did you trust the advice given to you by the system?” The
possible answers were on a scale of 1-5, where 5 indicates
highest satisfaction and 1 the lowest satisfaction.

The average answers to question (i) were: UMPA – 3.29
and Agent – 3.05, i.e., UMPA advice was considered signif-
icantly better than Agent advice (p < 0.05). Similarly with
respect to trust. The average answers to question (ii) were
UMPA — 3.23 and Agent — 2.92, i.e., users trusted UMPA
advice significantly more than Agent advice (p < 0.05).

Conclusions and Future Work

This paper presents an innovative computational model for
advice generation in human-computer settings where agents
are essentially self-interested, but share some common goals
with the human. To assess the potential effectiveness of our
approach we performed an extensive set of path selection ex-
periments in mazes. Results showed that the agent was able
to outperform alternative methods that solely considered the
agent’s or the person’s benefit, or did not provide any advice.

In future work, we will extend this approach to settings in
which people and computers interacted repeatedly, requiring
the agent to reason about the effects of its current advice on
people’s future behavior. We also mean to adapt our model
to real road maps. We expect that the only significant change
will be a different greediness heuristic. Naturally, the cost
of color change will need to be replaced by a more prac-
tical measure, such as switching of transportation mode or
road type (speed limit, interstate, etc.). Long term research
should consider other self-interested recommendation sys-
tems such as travel agents.
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