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Abstract

Reinforcement learning algorithms can train an agent to oper-
ate successfully in a stationary environment. Most real-world
environments, however, are subject to change over time. Re-
search in the areas of transfer learning and lifelong learning
addresses this problem by developing new algorithms that al-
low agents to adapt to environment change. Current trends in
this area include model-free learning and data-driven adapta-
tion methods. This paper explores in the opposite direction
of those trends. Arguing that model-based algorithms may be
better suited to the problem, it looks at adaptation in the con-
text of model-based learning. Noting that standard algorithms
themselves have some built-in capability for adaptation, it an-
alyzes when and why a standard algorithm struggles to adapt
to environment change. Then it experiments with lightweight
and straightforward methods for adapting effectively.

Introduction

In reinforcement learning (RL), an agent explores an envi-
ronment, and its actions change the state of that environ-
ment. Different action sequences cause different state se-
quences and also earn different rewards. By accumulating
knowledge through experience, an agent learns how to max-
imize its rewards.

RL algorithms are optimized for stationary environments.
Most realistic environments, however, are subject to change
over time. Research in the areas of transfer learning and
lifelong learning addresses this problem by developing new
algorithms that allow agents to adapt to environment change.

An RL environment is characterized by its set of possible
states, the set of possible actions, the state transitions caused
by actions, and the rewards earned by actions. This paper
focuses on types of environment change that cause some
actions to have different effects or earn different rewards.
When this occurs, a trained agent’s knowledge becomes at
least partially incorrect, but often still contains useful infor-
mation.

Reinforcement learning is most often done in a model-free
fashion. In this type of RL, agent knowledge is limited to a
policy, which maps environment states directly to desirable
actions. Another type of RL, called model-based, has agents
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accumulate both a policy and an environment model, which
stores knowledge about the immediate effects of actions.

Model-free RL is effective at training agents to behave
successfully, but it produces a shallow kind of learning that
does not include a real understanding of the environment.
This limits the ability of model-free agents to detect envi-
ronment change and adapt to it. Model-based RL produces a
deeper kind of learning that includes direct knowledge about
the environment. This can allow a model-based agent to
detect changes when they occur, and also provides useful
information for adapting. This paper therefore focuses on
adaptation in model-based RL.

Some basic RL algorithms have theoretical guarantees of
success under certain conditions, one of which is a stationary
environment (Sutton and Barto 1998). However, theory and
practice often have a tenuous relationship in reinforcement
learning. In practice, RL agents can often adapt success-
fully to environment changes if they are infrequent enough
or slow enough. The incremental learning process of RL
provides some built-in capability for adaptation.

This paper takes a well-known model-based RL algorithm
(prioritized sweeping) and explores its capabilities and lim-
itations with respect to environment change. Experiments
in a simple domain show that adaptation can be possible,
but that some types of changes can cause it to be quite
slow. An analysis of these situations leads to experiments
with lightweight and straightforward extensions to priori-
tized sweeping that can achieve effective adaptation.

Related Work

Environment change in reinforcement learning has been
studied under several names, including transfer learning and
lifelong learning. Transfer learning involves one or more
source tasks that are followed by a rarget task. Lifelong
learning takes place over an extended agent lifetime, and in-
volves a sequence of tasks.

A large body of work in RL transfer is summarized in a
recent survey (Taylor and Stone 2009). Three model-based
approaches seem most relevant here. The first uses the old
environment to produce prior probabilities for a Bayesian
learner in the new environment (Sunmola and Wyatt 2006).
The second uses experience samples from an old environ-
ment to make better predictions earlier in a new environ-
ment (Taylor, Jong, and Stone 2008). The third also transfers



experience samples, but focuses on screening the samples
for applicability in the new environment (Lazaric, Restelli,
and Bonarini 2008).

In lifelong RL, some work focuses on allowing agents to
develop and maintain multiple capabilities. For example,
the EVM architecture has an ensemble of parallel learning
cells that can specialize independently for different environ-
ments (Nowostawski 2009). Another approach uses hier-
archical RL to split learning into multiple levels, providing
some stability in the event of change (Kleiner, Dietl, and
Nebel 2002).

Other work in lifelong RL focuses on the problem of tran-
sitioning between environments. Some algorithms approach
this problem by developing policy-learning biases based on
knowledge from the old environment (Thrun and Mitchell
1995; Tanaka and Yamamura 1997). Along similar concep-
tual lines is a method that uses statistics from old environ-
ments to influence which regions in a new environment re-
ceive the most attention (Tanaka and Yamamura 2003). An-
other approach is to make direct use of the policy from the
old environment, but to relearn parts of it that fail in the new
one (Minato and Asada 1998).

This paper differs from much of its related work by focus-
ing on model-based RL, since most work in this area uses
model-free learning. Those studies that do use model-based
RL tend to propose data-driven algorithms for adaptation.
This paper focuses instead on more lightweight methods, in-
spired by an analysis of when standard RL algorithms strug-
gle to adapt to environment change. These methods attempt
to leverage model-based knowledge in common-sense ways.

Experimental Domain

An ideal domain for the goals of this paper would be con-
ceptually simple, yet contain moderately difficult learning
tasks and a variety of ways to introduce change. The do-
main should be simple to facilitate a close analysis of algo-
rithm behavior, but the tasks should be difficult enough that
effective adaptation can make a significant difference. This
section introduces a domain called Mail that is designed to
meet these requirements.

In the Mail domain, the agent is a courier whose job is
to move packages between rooms. Rooms are laid out in
a grid, and each room initially contains one package. Each
package has an unknown destination room. The agent earns
rewards by delivering packages to their destinations.

Tasks in the Mail domain are episodic. In each episode,
the agent has a fixed number of steps to act. At each step, it
chooses among these actions: move north, move east, move
south, move west, and exchange.

Movement actions have obvious results, except that at-
tempts to move beyond the grid of rooms have no effect.
The exchange action puts down the package the agent is car-
rying (if any) and picks up the other package in the agent’s
current room (if any). When a package is put down in its
destination room, the agent receives a reward and the pack-
age disappears from the environment. Any action may, with
a small probability, fail to have any effect at all; this makes
the domain mildly non-deterministic.
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Figure 1: Three initial environment configurations in the
Mail domain, with package destinations shown by arrows.

Tasks in this domain can be made arbitrarily challenging
simply through combinatorics. The number of possible envi-
ronment states increases steeply with the grid size. Figure 1
shows three environments in the Mail domain that are small,
yet non-trivial to learn. Each of these tasks allows 20 steps
per episode and provides a reward of 10 for each package
delivery.

Model-Based Reinforcement Learning

A model-based RL agent begins by observing the state s of
its environment and choosing an action a to perform. Then
it observes the resulting state s’ and receives a reward r for
its action. It uses this information to update its knowledge,
which consists of both an environment model and a policy.

Let S represent the set of possible states of the environ-
ment and let A represent the set of possible actions. Each en-
vironment has a function P(s, a, s"), which gives the prob-
ability that taking action a in state s causes a transition to
state s/, and a function R(s,a,s’), which specifies the re-
ward earned by this transition. In discrete domains, an en-
vironment model is a pair of tables that approximate these
functions. Learning an environment model then means up-
dating table entries based on observations.

A common way to represent a policy is with a Q-function
Q(s, a), which estimates the total reward the agent can earn
starting in state s and taking action a. Given an accurate Q-
function, the agent can maximize its rewards by choosing ac-
tions with maximal Q-values. Learning a policy then means
updating Q-values to make them more accurate. Given ap-
proximate P and R, estimates for ()4, can be computed ac-
cording to the function estimate(s, a) below. The discount
parameter v € (0, 1] weights the importance of immediate
rewards relative to more distant rewards.

estimate(s,a) = Z Pios [Reas +ymaxy Qyrar]

s’/

Even before the Q-function is accurate, an RL agent typ-
ically chooses actions with maximal Q-values most of the
time. This produces nearly random behavior at first, when
the Q-values are uniformly low, but over time the agent dis-
covers which actions lead to better rewards. To avoid settling
for suboptimal behavior, an agent needs to perform occa-
sional exploration actions throughout the learning process.
This is often accomplished via e-greedy exploration: with
probability ¢ € (0,1), an agent chooses a random action
instead of the one with the highest Q-value.

One classic approach to model-based RL is the Dyna ar-
chitecture (Sutton 1990). After each observation in the en-
vironment, a Dyna agent updates P and R and then selects



Table 1: The prioritized sweeping algorithm, based on pseu-
docode from Sutton and Barto (1998).

Initialize empty tables P, R, and )
Initialize empty priority queue PQueue
Learning procedure:
Observe current state s
Choose action a < argmax,;Qsa
With probability €, change a to a random action
Execute action a and observe next state s” and reward r
Update P, and Ry, o
Compute priority p < |estimate(s,a) — Qsa]
If p > 0, insert (s, a) onto PQueue with priority p
Repeat N times while PQueue is non-empty:
(s,a) « remove highest-priority item from PQueue
Update Qsa  Qsa + a (estimate(s,a) — Qsa)
For each (3, a) for which Pszs > 0:
Compute priority p < |estimate(s,a) — Qsa
If p > 0, insert (3, a) onto PQueue with priority p

N random Q-values to update. The prioritized sweeping al-
gorithm is a variant of Dyna in which the agent focuses on
larger updates, rejecting any smaller than a threshold 6, and
prioritizes them in a way that tends to propagate changes
quickly (Moore and Atkeson 1993).

Prioritized sweeping is described in Table 1. The learning
rate parameter o € (0, 1] controls how quickly the Q-values
change.

Prioritized Sweeping and Change

This section explores how prioritized sweeping copes with
environment changes through experiments in the Mail do-
main. Each change experiment is repeated three times with
three independent tasks: the cycle, horizontal, and diagonal
tasks from Figure 1. Agents learn until their performance
stabilizes in these initial environments, and then they con-
tinue learning in the corresponding changed environments.

Learning curves are shown for all three tasks, starting at
the time of the change. Curves representing these agents
are labeled old-model, since they proceed with the com-
plete model from the old environment. After each train-
ing episode, performance is estimated by averaging rewards
over 100 episodes in which no learning or exploration oc-
curs. To generate a smooth final curve for an experiment,
100 independent curves are averaged together.

For comparison, there are also curves labeled fresh-start.
These represent agents that start learning just as the en-
vironment changes, without any old knowledge. They
serve as a baseline; agents are not considered to be adapt-
ing effectively unless they at least keep up with these
curves. Learning parameters from Table 1 are always set
to optimize the fresh-start curves, and typical values are
a = 05,¢e =017 = 09560 =01, N = 10.

Very simple changes are sufficient to establish the limita-
tions of adaptation with prioritized sweeping. Consider first
a larger-reward change, in which the rewards for package
deliveries increase from 10 to 15. This scenario should be
trivial for adaptation, because it requires no change in agent
behavior, and Figure 2 shows that this is indeed the case.
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Figure 2: The larger-reward change. Prioritized sweeping
adapts with no loss in performance.
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Figure 3: The smaller-reward change. Prioritized sweeping
struggles to adapt, and agents would be better off starting
fresh.

The old-model agent can perform perfectly right away, suf-
fering no decrease in rewards as it adjusts Q-values to their
new levels.

Note that the cycle, horizontal, and diagonal environ-
ments have separate curves in all figures, but they are not
individually labeled, because they are all qualitatively simi-
lar when generated by the same learning algorithm. Some-
times they coincide completely, as with the old-model curve
in Figure 2. The figure keys are therefore simplified to dis-
tinguish only between different learning algorithms.

Next consider a smaller-reward change, in which the re-
wards for package deliveries decrease from 10 to 5. This
scenario also requires no change in agent behavior, so it
seems trivial as well. However, Figure 3 shows that pri-
oritized sweeping handles it quite poorly. While it begins
with optimal performance, it crashes as soon as it attempts
to adjust its knowledge to reflect the change. The fresh-start
agent actually learns the new environment faster than the
old-model agent can adapt.

To understand why, imagine what happens when the agent
makes its first delivery in the new environment. The re-



ward is smaller than it expects, so it updates its environ-
ment model and decreases some Q-values towards their new
levels. The Q-value decreases propagate along the path the
agent took, even though it is still the correct path. Now other
source-task paths to the same final state look better, though
they are not. It takes many episodes to correct the Q-values
along all possible paths, and during that time the agent per-
forms poorly.

This problem will occur with any environment change
in which an expected reward is reduced, in any domain
with multiple ways to reach the expected reward. This de-
scribes most environment changes and most real-world do-
mains. Prioritized sweeping unlearns expectations slowly,
and multiple paths compound the problem. Though opti-
mistic Q-value initialization is used effectively in some RL
algorithms (Szita and Lorincz 2008), optimistic expectations
appear to be harmful to adaptation.

Path Transfer

Humans adapting to the simple changes above would not
have the same difficulty. After observing the change in the
primary path, we would not need to try the others. Prior-
itized sweeping could simulate this by removing unneces-
sary alternate paths, allowing the agent to focus only on the
recommended path.

As Table 2 describes, this can be done by performing one
procedure when an environment change occurs. The costs
of transfer learning are typically measured in episodes rather
than computation, since cognition can be considered cheap
compared to experience. However, it is worth noting that
this algorithm is not computationally expensive either, since
it requires only a one-time sweep through an agent’s envi-
ronment model.

Learning curves for agents using this algorithm are la-
beled path-transfer. With this approach, consider again
the smaller-reward change that caused difficulties earlier.
Figure 4 shows that adaptation can now proceed quickly.
Agents suffer a small dip in performance as they correct their
knowledge, but remain well ahead of the fresh-start baseline.

Consider also a pickup-penalty change, in which a penalty
of -5 occurs when the agent picks up a package, offset by the
usual +10 reward when it delivers. This scenario also rep-
resents a decrease in expected rewards, and Figure 5 shows
that path transfer handles it similarly well.

Next consider a broken-action change: the action for
moving east becomes an action for moving diagonally, as

Table 2: Agents using the path-transfer variant of prioritized
sweeping follow Table 1, but perform this procedure once
when an environment change occurs.

Begin in the episode initial state s
Until reaching the episode final state:
Find the action a with highest Q s,
Find the likely next state s’ according to P
Mark the transition (s, a, ")
Lets « s
For all unmarked transitions (s, a, s’):
Clear entries in P, R, and Q)
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Figure 4: The smaller-reward change revisited. With the
path-transfer approach, prioritized sweeping adapts effec-
tively.
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Figure 5: The pickup-penalty change. With the path-transfer
approach, prioritized sweeping adapts effectively.
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Figure 6: The broken-action change. With the path-transfer
approach, prioritized sweeping adapts effectively.
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Figure 7: The new-destination change. With the path-
transfer approach, prioritized sweeping starts out well, but
falls behind later due to slow adaptation.

if due to a mechanical malfunction. This scenario does not
directly reduce rewards, but it does violate expectations by
causing agents to fall off their recommended path whenever
they attempt to move east. Figure 6 shows that path transfer
can handle this type of scenario too. Normal exploration and
learning allow agents to complete the task after they fall off
their path, and they remain ahead of the fresh-start baseline.

Note that it should be possible to handle this type of
change better than path transfer does. Old knowledge may
include ways to get back on the recommended path after
falling off. However, this knowledge is removed along with
the alternate paths in this approach.

Another type of environment change further illustrates the
limitations of path transfer. In the new-destination change,
the delivery destination of the agent’s last package shifts to
a different room. In this scenario, the recommended path
is actually misleading, and partially distracts the agent from
learning the optimal path. Figure 7 shows that path transfer
starts out well, but the agents adapt so slowly that it falls
behind the fresh-start baseline. The need to unlearn incorrect
expectations makes this type of change difficult to handle.

Step Transfer

Humans adapting to the moderate changes above would still
not have the same difficulty. We would recall alternate paths
when necessary, and we would quickly lose trust in old
knowledge when it failed to produce success in a new envi-
ronment. Prioritized sweeping could simulate this by keep-
ing all the old knowledge accessible and using it for recom-
mendations only as needed, retracting knowledge that seems
untrustworthy.

As Table 3 describes, this can be done by inserting three
procedures into each iteration of prioritized sweeping. Note
that this algorithm does not introduce a large amount of extra
computational complexity either. The first two procedures
are cheap, and the third, which requires a sweep through an
environment model, is only performed once if at all.

Judging knowledge to be untrustworthy requires some
discretion, since unexpected results may occur occasionally
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Table 3: Agents using the step-transfer variant of prioritized
sweeping follow Table 1, but insert these procedures into
each iteration of prioritized sweeping.

If an environment change has occurred:
Shelve the old P, R, and () tables
Initialize new empty tables P, R, and )
Initialize empty recommendation list L
Initialize trust < true
Before choosing an action in a state s:
If trust is still true:
Get the action a with highest old Q4
Get the likely next state s’ according to old P
If recommendation (s, a, s") is not already in L:
Add (s,a,s’) to L
Copy entries for (s, a, s") from old P, R, Q to new
After a transition (s, a, 5):
If trust is still true:
If a recommendation in L incorrectly predicts s’ # 5:
If the recommendation (s, a, s") is untrustworthy:
Set trust < false
Clear entries for (s,a,s’) innew P and R
Decrease all entries in new () by the old Qsq

due to non-determinism. Furthermore, unexpected transi-
tions that still yield expected rewards should be tolerated,
since differences may be unimportant until they affect re-
wards. A recommendation from old knowledge is there-
fore judged untrustworthy only if it incorrectly predicts both
the state and the reward, and has done so enough times to
reasonably rule out non-determinism as the cause. In the
Mail domain, and probably in most domains, two failures is
enough to indicate a bad recommendation.

When a recommendation has been rejected, Q-values are
reduced to remove the false expectations it produced. It is
better to reduce Q-values too much than too little in order
to avoid false optimism. Furthermore, since old knowledge
beyond this recommendation is likely to be invalid, agents
using this algorithm disregard old knowledge after rejecting
a recommendation.

Learning curves for agents using this algorithm are la-
beled step-transfer. With this approach, consider again the
broken-action change that was handled suboptimally earlier.
Figure 8 shows that adaptation is now much more effective.
Agents are able to access alternative paths to immediately
compensate for the broken action.

Also consider again the new-destination change that
caused difficulties earlier. Figure 9 shows that adaptation
is much improved here as well. Agents recognize that their
old knowledge is incorrect about the last delivery, retract the
harmful expectations, and complete the task through normal
exploration and learning.

This approach should be mostly resistant to falling behind
the fresh-start baseline, because it essentially reverts to stan-
dard prioritized sweeping as soon as it encounters any signif-
icant differences between the tasks. However, there are two
types of scenarios where step transfer might behave undesir-
ably. One is if the optimal path in the new environment has
differences from the old path early on but similarities later
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Figure 8: The broken-action change revisited. With the step-
transfer approach, prioritized sweeping adapts with no loss
in performance.
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Figure 9: The new-destination change revisited. With the
step-transfer approach, prioritized sweeping adapts effec-
tively.

on. In this case, step transfer will not be harmful, but it may
not make optimal use of the old knowledge. Another is if the
optimal path in the old environment earns the same rewards
in the new one, but higher new rewards become available
elsewhere. In this case, any transfer algorithm might be a
distraction; exploration in the new task is always important
for this reason.

Conclusions

This paper pursues under-studied directions in the area of
adaptation to environment change, a key aspect of transfer
learning and lifelong learning. First it argues that model-
based reinforcement learning is well suited to this problem,
since it allows for a deeper kind of learning. Then it iden-
tifies when and why prioritized sweeping struggles with en-
vironment change: when rewards are reduced, agents un-
learn expectations slowly, particularly when there are multi-
ple paths to an expected reward. Finally it experiments with
solutions that address these limitations directly in straight-
forward ways, proposing lightweight extensions to priori-
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tized sweeping. These include using old knowledge selec-
tively and quickly discarding incorrect information.

The experiments in this paper are preliminary and ex-
ploratory, providing suggestions more than conclusions. Pri-
marily, their purpose is to indicate that methods for transfer
and lifelong learning do not necessarily need to be model-
free and data-driven. The Mail domain is illustrative, and
lightweight transfer algorithms are likely to be beneficial in
many domains that contain multiple paths to a goal state.
However, broader experiments are needed for evaluation and
comparison with other approaches.

The algorithms here are necessarily limited to discrete en-
vironments because they are based upon prioritized sweep-
ing. Lightweight extensions to different model-based RL
algorithms could allow for continuous state sets, and more
generally, could broaden the study of this type of approach.
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