
The Activity-Based Computing Project

Jakob E. Bardram
IT University of Copenhagen

DK-2300 Copenhagen, Denmark
bardram@itu.dk

Abstract

This position paper describes the Activity-Based Com-
puting (ABC) project which has been ongoing in Den-
mark since 2003. Originally, the project took its outset
in the design of a pervasive computing platform suited
for the mobile, collaborative, and time-critical work of
clinicians in a hospital setting. Out of this grew a con-
ceptual framework, a set of six ABC principles, and
a programming and runtime framework for the devel-
opment of activity-based computing infrastructures and
applications. Lately, these principles and technologies
have been successfully moved to other application ar-
eas, and is now used to design and implement activity-
based computing support for work in a biology labora-
tory and for global software development.

Introduction

An increasing body of research on information workers
using personal computers shows that there is a signifi-
cant mental and manual overhead associated with the han-
dling of parallel work tasks and interruptions (Czerwinski,
Horvitz, & Wilhite 2004; Mark, Gonzalez, & Harris 2005;
Robertson et al. 2004; Adamczyk & Bailey 2004; Iqbal &
Horvitz 2007), and that the user interface in current operat-
ing systems fails to give adequate support for the resump-
tion of previous activities and for easy alternation between
parallel activities (Czerwinski, Horvitz, & Wilhite 2004;
Robertson et al. 2004).

Existing operating systems are single-user oriented, i.e.
designed to support individual tasks such as word process-
ing, handling email, editing graphics, etc. This personal and
task-oriented approach provides little support for the aggre-
gation of resources and tools required in carrying out higher-
level activities. It is left to the user to aggregate such re-
sources and tools in meaningful bundles according to the
activity at hand, and users often have to reconfigure this ag-
gregation manually when shifting between a set of parallel
activities.

A number of studies have revealed that people orga-
nize and think of their work in terms of activities that are
carried out in pursuit of some overall objective, often in
collaboration with others (Christensen & Bardram 2002;

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gonzalez & Mark 2004; Moran, Cozzi, & Farrell 2005). Var-
ious research initiatives have therefore sought to introduce
basic support for ‘activities’ or ‘tasks’ into the computer sys-
tem. All these initiatives share the overall goal of trying to
create computational support that would enable users to han-
dle the complexity of the many different applications, ser-
vices, documents, files, users, and other materials involved
in achieving the objective of a given activity.

The aim of the Activity-Based Computing (ABC)
project (Bardram & Christensen 2007) is to investigate how
to create computational support for human activities. In con-
trast to other approaches, which tend to focus on information
workers sitting at a desk, our research has taken its outset in
the design of activity-based computing support for clinical
work in hospitals. Once you move away from the desktop
and into a non-office-like environment such as a hospital, the
challenges arising from the management of parallel activi-
ties and interruption are amplified because multi-tasking is
now combined with a high degree of mobility, collaboration,
and urgency (Bardram & Bossen 2005). By ‘mobility’ we
mean that clinicians are constantly moving between differ-
ent physical and social working environments and often be-
tween different computational devices as well. Unlike infor-
mation workers, clinicians in a hospital do not have personal
computers. Instead they have to access medical information
such as patients’ medical records through shared comput-
ers. ‘Collaboration’ refers to the fact that clinicians need to
remain aware of each others’ work and to be able to coor-
dinate and communicate easily with relevant colleagues. Fi-
nally, the urgency of clinical work means that the overhead
involved in accessing and navigating medical information,
including manual re-configuration due to interruptions, mo-
bility, or collaboration, must be kept to an absolute mini-
mum, since delays may have a direct impact on the well-
being of a patient.

The approach taken in the ABC project is to design an in-
frastructure that will enable clinicians to handle a large set of
parallel activities spanning multiple services, applications,
and resources, while moving around inside the hospital and
collaborating closely with others. The end-user devices in
question are public rather than personal, and include large
wall-based interactive displays, touch screens embedded in
hospital beds, and smaller mobile devices. Such devices re-
semble the original proposed Ubiquitous Computing devices

2

Activity Context Representation — Techniques and Languages: Papers from the 2011 AAAI Workshop (WS-11-04)



of a board, pad, and tab (Weiser 1991). In a ubiquitous com-
puting setup of this kind, where users are using a multitude
of heterogeneous computing devices, it is essential that they
be supported at the overall activity level, as it becomes im-
possible to use such a ubiquitous computing setup if the user
has to re-arrange applications and services whenever he or
she shifts between computational devices and/or activities.

In this position paper, we will describe the conceptual
model of activity-based computing, the six ABC principles,
and present the current version of our activity-based com-
puting technology.

Activity-Based Computing Principles

On the basis of our theoretical and empirical background,
we have identified the six principles for activity-based com-
puting. This section briefly describes these principles. The
ABC ToCHI paper (Bardram 2009) and the ABC CHI 2006
paper (Bardram, Bunde-Pedersen, & Soegaard 2006) con-
tains a more detailed description of these principles.

Activity-Centered – A ‘Computational Activity’ collects,
in a coherent set, a range of services and data needed to
support a user carrying out some kind of (work) activ-
ity. For example, in Figure 1 the ‘Mrs. Pedersen’ activ-
ity assembles a set of services and data relevant for the
chemotherapy treatment of this leukemia patient.

Activity Suspend and Resume – A user participates in
several activities and he or she can alternate between these
by suspending one activity and resuming another. Resum-
ing an activity will bring forth all the services and data
which are part of the user’s activity.

Activity Roaming – An activity is stored in an infrastruc-
ture and can be distributed across a network. Hence, an
activity can be suspended at one device and resumed on
another in a different place.

Activity Adaptation – An activity adapts to the resources
available on the device on which it is resumed. Such re-
sources are e.g. the network bandwidth, CPU, or display
on a given devices. Hence, an activity might look quite
different whether it is resumed on a wall-sized display or
on a PDA.

Activity Sharing – An activity is shared among collabo-
rating users. As illustrated in Figure 1, an activity has a
group of participants who can access the activity. Conse-
quently, all participants of an activity can resume it and
continue the work of another user, thereby taking turns in
working on an activity. Furthermore, if two or more users
resume the same activity at the same time on different de-
vices, the infrastructure will set up a real-time collabo-
ration session where they all work on the activity at the
same time.

Activity-awareness – An activity is ‘aware’ in the sense
that it is able to adapt and adjust itself according to its
usage context. Activity-awareness can be used for adapt-
ing the user interface according to the user’s current work
situation by e.g., by showing medical data for the patient

Figure 1: An conceptual illustration of an Activity that has
a set of participants, and holds references to a set of ser-
vices that access a set of resources in terms of medical data
items (Bardram 2009).

currently being treated, or it can be used in a more techni-
cal sense, where the execution of an activity, and its dis-
covery of services, is adjusted to the resources available
in its proximity.

ABC Ontology

Figure 2 illustrates the current version (5) of the ABC ontol-
ogy as an UML diagram. The core concept in ABC is the hi-
erarchical structure of Activity–Action–Operation.
But since these three entities share a lot of common func-
tionality, they share a common abstract superclass called
Enactment. All enactments (activity, action, operation)
share the following:

Lifecycle Methods – Four activity-based lifecycle and one
workflow related methods exists:
init() – initializes the enactment, making it ready to

be used.
finish() – finishes the enactment, taking it out of ac-

tive use.
resume() – resumes the enactment.
suspend() – suspends the enactment.
done() – marks the enactment as done with respect to

the workflow status.
Participants – each enactment – and hence each activity,

action, and operation – has a set of participants who
can access the enactment. Note that a participant is a
Principal, which can be authenticated to access the
ABC infrastructure.

Relationships – As part of supporting activity-based work-
flow management, the current version 5 of the ABC on-
tology has been extended with a Relationship as-
sociation. All enactments can have a set of relation-
ships, which again can refer to a set of related en-
actments. In version 5, a simple association relation-
ship (AssociationRelationship) has been mod-

3



+init()
+finish()
+resume()
+suspend()
+done()

Enactment

Action Operation

Participant

Resource

Relationship

AssociationRelationship

ExcludeRelationship

IncludeRelationship

PrecedenceRelationship

ResponseRelationship

Principal

Activity

Log

*

0..1

*

*

*

*

* *

*

Figure 2: The ABC Ontology – version 5.

elled, as well as the different workflow related relation-
ships, which models whether a set of enactments are
either included (IncludeRelationship), excluded
(ExcludeRelationship), has to be temporally pre-
ceding this enactment (PrecedenceRelationship),
or if a response is required from this enactment
(ResponseRelationship). Activity-based work-
flow management will not be discussed in any further de-
tails here.

Log – A simple log that records what is happening to an en-
actment. This log is rather generic in nature (and is sub-
ject to specialization), and typically logs both technical
event (like resume/suspend) as well as human event (like
a message associated with the enactment). The log is, for
example, used to implement online messaging in activity
sharing.

Besides these more general issues handled by the common
enactment super class, the Activity and Operation
classes handles the resources:

Activity – An Activity has a set of Resource objects
associated.

Operation – An Operation reference at most one
Resource, which is part of the overall activity. Typi-
cally, this resource is ‘activated’ when an operation is re-
sumed.

Resource – A Resource is basically identified and ac-
cessible via an Unified Resource Identifier (URI). A re-
source can be electronic objects like a PDF document, a
web page, an email, etc. These kind of resource are typi-
cally shown on the display when an operation pointing to
this resource is resumed. In version 5, a resource can also
be a service, and when resumed, this service is started.

The ABC Infrastructure

Version 5 of the ABC infrastructure is build as a peer-to-peer
(P2P) architecture. Figure 3 illustrates the overall P2P archi-
tecture. In contrast to previous versions of ABC where the
Activity Manager was located on a central server, in version
5 each peer (client) has an instance of the Activity Manager
running. Each client can also run the user-interface client
called the Activity Browser. An Activity Browser is per de-
fault connected to the local Activity Manager (link 1 in Fig-
ure 3). Activity Managers can discover each other (using
mDNS), and know the existence of each other (link 2 in
Figure 3). An Activity Browser can connect to any Activ-
ity Manager which are discovered and enlisted by the local
Activity Manager. Hence, in Figure 3, the Activity Browser
on client 2 can mount and access data in Activity Manager
on client 1 (link 3), once the Activity Manager of client 2
has connected to the Activity Manager of client 1 (link 2).

Client_1

<<component>>
ActivityBrowser

<<component>>
ActivityManager

Client_2

<<component>>
ActivityManager

<<component>>
ActivityBrowser

3 1

2

1

Figure 3: A simple schematic view of the ABC peer-to-peer
(P2P) architecture for version 5.

The Activity Manager is build on top of Aexo (), which is
an event-based hierarchical data structure enabling the peer-
to-peer architecture of the Activity Managers. This peer-to-
peer hierarchical mapping structure holds all persistent data
in the system including users, activities, (links to) resources,
and contextual information such as location.

The Activity Browser is consists of a set of user interfaces
designed to be used in large multi-touch displays like wall
displays (see Figure 4) and tabletop computers. The imple-
mentation is designed for distributed multi-display environ-
ment and runs on various hardware devices distributed in a
network, e.g. mobile, desktop, table or wall-based display.
The system can also be coupled with context sensors such
as location trackers and thereby keep track of the physical
location of entities like clinicians, patients, equipment, mo-
bile computers, etc.

Activity-Centered

The ABC framework implements the ontology described
above, in which activities are the center of the data model.
Each activity has a set of actions, which again has a set of
operations. Each activity has a collection of resources, e.g.
files, web pages, applications, medical files record, radiog-
raphy, etc. The user interaction with the interface starts on
the activity level, where activities and related actions are
presented in the Activity View (Figure 5). In this view, all
‘relevant’ activities are shown, with their interdependencies

4



Figure 4: Using the Activity Browser on a large public multi-touch wall display.

and status. Status icons indicates if the activity is resumable
and/or done. By clicking the large arrow, a list of actions for
an activity is revealed below the activity.

Figure 5: In the Activity View, activities are represented by
floating panels including graphic and text description. Re-
lated actions are linked together.

When clicking on an action, the Action View is shown
(Figure 6). The action view shows the operations of an ac-
tion. Each operation is tied to either a resource or a service.
As illustrated in Figure 6, an operation can be linked to a
Xray image (a resource), in which case the operation shows
this image, or it can be linked to a blood pressure monitor (a
service), in which case it shown the output from the monitor.

Activity Suspend and Resume

The general ontology and the infrastructure allow for one or
more activities to be resumed at the same time. However,
the current user interface do not allow the user to do this,

Figure 6: In the Action View, an action with its operations
are shown. Each operation is linked to a specific resource or
service, which is shown inside the window. In this picture,
three operations are shown, one showing a resource that re-
veals the status of the operation; one showing a Xray image;
and the last showing the output from a blood pressure mon-
itor service.

since it make little sense to resume the overall activity. In-
stead, the user can – by clicking the action icon unfolding
beneath an activity – resume an action, in which case the
display switches to the Action View (Figure 6). Each opera-
tion shown in the Action View can be individually resumed
or suspended. When the user suspends the action, the display
switches back to the Activity View.

Activity Roaming

The user can interact with activities he or she is participat-
ing in on all activity-based displays. This means that the
user can access activities and resume action on any display
supporting by the ABC infrastructure, which then allow the

5



user to roam from one location to another. The infrastructure
saves the state of an activity (and its actions and operations),
which means that when the user resumed an action, it will
appear just as it was left during the previous user session.
Note, however, that the previous user session might have
been by another participant, in which case the user can pick
up where the previous user left the work. Activity roaming
is supported by distributing activity data in the peer-to-peer
infrastructure of Activity Managers.

Activity Adaptation

Our current approach to adaptation is to design a generic
technology that can run on any platforms in the same way.
The user interface is designed for interaction on different
displays with input specificities, e.g. mouse, touchpad or
touch-based input device. This flexibility allows to interact
with the activities in several alternative ways. For example,
in order to move, suspend or resume the activities or re-
sources on a touch display, the user can either use the mouse
buttons or his fingers.

Activity Sharing

The ABC infrastructure has inherent support for collabora-
tion, as activities are shared among participants. All partic-
ipants of an activity can resume an activity and continue
the work of another user or work concurrently. The sys-
tem also supports activity sharing similar to desktop confer-
encing systems; users can share the layout of the resources,
start multi-site video-conference sessions, and post text mes-
sages. The collaborative user interface is shown in Figure 7,
which include a video-conference window (top, right), the
Action Log for entering text messaging, and a list of partic-
ipants for this action.

The layout of operation windows is also synchronized be-
tween the action views of the participants. This enforces
a WISIWYS1 metaphor for collaboration; whenever a user
moves or resizes a operation window, it is moved and re-
sized in other users’ action views as well. The framework
also allows a user to establish audio and video links with
remote participants and hold a multi-point video conference
session. The video conference link is established depending
on the location of users and the resumed action; the video is
automatically started whenever two or more remote users re-
sume the same action, but for co-located participants, video
conference is irrelevant and do not start automatically.

Activity Awareness

In activity-based computing, context events, such as the lo-
cation of users, are linked to the relevance of an activity.
For example, the presence of the physician near the patient
may trigger a suggestion to resume the computational activ-
ity associated with this patient’s treatment. In this case, the
ABC infrastructure will highlight relevant activities and doc-
uments for that patient on any available public display, such

1Acronym for ”What I See Is What You See”, which refers to
a paradigm within groupware systems where multiple users, in-
teracting with a multiuser software system, share the same visual
perception of the work area at all time.

Figure 7: An Action View showing operations and their re-
sources on the left, and on the right showing the activity
sharing windows; the video-conference window (top), the
Action Log for text messaging, and the list of participants.

as the portable device carried by the physician. The current
implementation uses location tracking based on active RFID
tags. The user’s location is used for several purposes which
include updating the list of participants in an activity and
starting video-conference sessions between users resuming
an activity. Contextual information is stored and managed by
a ‘Context Service’. The actual detection of relevant activi-
ties are done by a specific ‘Activity Detection Component’
that listens to context events in the context service and finds
relevant activities that match with context events. These ac-
tivities are then highlighted in the Activity View.

Ongoing Work

The original research on activity-based computing was done
in a hospital environment. Right now we are finalizing the
implementation of version 5 of the ABC infrastructure,
which then will be put into testing and evaluation in collab-
oration with a university hospital in Copenhagen. In com-
parison to other tests of the ABC ideas, concepts, and tech-
nologies, we are specifically focusing on designing support
for large multi-touch displays and the support for work-
flow, which has been implemented as part of the TrustCare
project2.

Lately, the ABC concepts and technologies has been used
in other projects and application domains as well. As part of
the Mini-Grid project3, an interactive laboratory bench has
been build. This bench has a multi-touch table for execut-
ing laboratory experiments. The activity-based computing
concepts has been implemented as part of this interactive
lab bench in order to help organize and manage the differ-
ent tasks and resources associated with biology experimen-
tation. Right now this lab bench is being deployed in a uni-
versity laboratory, and we are looking forward to learn about
the suitability of using activity-based computing technology
for this application domain.

2http://www.itu.dk/research/TrustCare/
3http://www.itu.dk/research/mini-grid/

6



Moreover, as part of the ‘Next Generation Technology for
Global Software Development’ project4, we are currently in-
vestigating the applicability of the ABC concepts and tech-
nologies for supporting awareness, coordination, collabora-
tion, and communication in globally distributed software en-
gineering. This research has just started and no result are
available yet.

In general, one of the main findings of researching
activity-based computing since 2002, is that the concepts
and principles of activity-based computing has proved ex-
tremely useful and stable across a wide range of challenges
and application areas. Moreover, the concepts has helped
design new solutions for computational support which has
been rather consistent in its logical organization. As such,
the concept of ‘Activity’ and the activity-based computing
principles have helped address a wide range of technical
problems and has provided a conceptual uniform solution
to them.

Acknowledgments

A wide range of people has been part of the ABC project
since its start in 2002, and they have all made signif-
icant contributions to the research. In order of appear-
ance: Henrik Bæbak Christensen; Claus Bossen; Jonathan
Bunde-Pedersen; Mads Søgaard; Afsaneh Doryab; Steffen
Sørensen; Morten Esbensen; Søren Nielsen; and Sofiane
Gueddana.

The research on ABC has been supported by the Danish
Council for Strategic Research as part of the ‘Activity-Based
Computing’ and the ‘TrustCare’ projects.

References

Adamczyk, P. D., and Bailey, B. P. 2004. If not now, when?:
the effects of interruption at different moments within task
execution. In CHI ’04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, 271–278.
ACM Press.
Bardram, J. E., and Bossen, C. 2005. Mobility Work - The
Spatial Dimension of Collaboration at a Hospital. Computer
Supported Cooperative Work. 14(2):131–160.
Bardram, J. E., and Christensen, H. B. 2007. Perva-
sive computing support for hospitals: An overview of the
activity-based computing project. IEEE Pervasive Comput-
ing 6(1):44–51.
Bardram, J. E.; Bunde-Pedersen, J.; and Soegaard, M. 2006.
Support for activity-based computing in a personal com-
puting operating system. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing sys-
tems, 211–220. New York, NY, USA: ACM Press.
Bardram, J. E. 2009. Activity-based computing for medical
work in hospitals. ACM Transactions on Computer-Human
Interaction 16(2):1–36.
Christensen, H. B., and Bardram, J. E. 2002. Supporting
Human Activities - Exploring Activity-Centered Comput-
ing. In Borriello, G., and Holmquist, L. E., eds., Proceedings

4http://global-interaction.org/en/Research/GIRI-Research-
Projects/Global%20Software%20Development

of Ubicomp 2002: Ubiquitous Computing, volume 2498 of
Lecture Notes in Computer Science, 107–116. Gothenborg,
Sweden: Springer Verlag.
Czerwinski, M.; Horvitz, E.; and Wilhite, S. 2004. A di-
ary study of task switching and interruptions. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in
computing systems, 175–182. ACM Press.
Gonzalez, V. M., and Mark, G. 2004. ”constant, con-
stant, multi-tasking craziness”: managing multiple working
spheres. In CHI ’04: Proceedings of the SIGCHI conference
on Human factors in computing systems, 113–120. ACM
Press.
Iqbal, S. T., and Horvitz, E. 2007. Disruption and recov-
ery of computing tasks: field study, analysis, and directions.
In CHI ’07: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, 677–686. New York, NY,
USA: ACM.
Mark, G.; Gonzalez, V. M.; and Harris, J. 2005. No task
left behind?: examining the nature of fragmented work. In
CHI ’05: Proceedings of the SIGCHI conference on Human
factors in computing systems, 321–330. ACM Press.
Moran, T. P.; Cozzi, A.; and Farrell, S. P. 2005. Unified ac-
tivity management: supporting people in e-business. Com-
mun. ACM 48(12):67–70.
Robertson, G.; Horvitz, E.; Czerwinski, M.; Baudisch, P.;
Hutchings, D. R.; Meyers, B.; Robbins, D.; and Smith, G.
2004. Scalable fabric: flexible task management. In AVI ’04:
Proceedings of the working conference on Advanced visual
interfaces, 85–89. ACM Press.
Weiser, M. 1991. The Computer for the 21st Century. Sci-
entific American 265(3):66–75.

7


