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Abstract

Traditionally, security decisions have been made without ex-
plicitly accounting for adaptive, intelligent attackers. Recent
game theoretic security models have explicitly included at-
tacker response in computing randomized security policies.
Techniques to date, however, generally fail to explicitly ac-
count for interdependence between the targets to be secured,
which is of vital importance in a variety of domains, includ-
ing cyber, supply chain, and critical infrastructure security.
We introduce a novel framework for computing optimal ran-
domized security policies in networked domains which ex-
tends previous approaches in two ways. First, we extend pre-
vious linear programming techniques for Stackelberg secu-
rity games to incorporate benefits and costs of arbitrary secu-
rity configurations on individual assets. Second, we offer a
principled model of failure cascades that allows us to capture
both the direct and indirect value of assets. Finally, we use
our framework to analyze four models, two based on random
graph generation models, a simple model of interdependence
between critical infrastructure and key resource sectors, and
a model of the Fedwire interbank payment network.

1 Introduction

Game theoretic approaches to security have received much
attention in recent years. Most have attempted to distill var-
ious aspects of the problem into a model that could then
be solved in closed form (see, for example, a recent sur-
vey of game theoretic techniques applied to network secu-
rity (Roy et al. 2010)). Numerous others, however, offer
techniques based on mathematical programming to solve ac-
tual instances of security problems. Approaches to network
interdiction (Cormican, Morton, and Wood 1998), for ex-
ample, offer (usually) an integer programming formulation
solving for an location of sensors that optimally interdict
traffic (such as drug traffic) through a network. The point
of departure of our work is a different line of work that de-
velops linear and integer programming methods for optimal
randomized allocation of security resources among possible
attack targets. In this work, the assumption is made that the
defender is a Stackelberg leader, that is, he is able to commit
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to a randomized policy, which is subsequently observed by
the attacker who optimally responds to it. Initial work on the
subject offered an approach relying on multiple linear pro-
grams to compute such an optimal commitment strategy in
general two-player games (Conitzer and Sandholm 2006).
Follow-up work focused on integer programming methods
for Bayesian security settings (Paruchuri 2008), and much
has attempted to exploit the special structure of security sce-
narios to build faster algorithms (Kiekintveld et al. 2009),
with some of these finding use in actual security applications
such as ARMOR for the allocation of canine patrols in LAX
and IRIS for the scheduling of federal air marshalls (Jain et
al. 2010).

In this paper we introduce a novel framework for comput-
ing optimal randomized security policies in networked do-
mains. First, in Section 2 we give some background on how
security scenarios have previously been modeled as Stack-
elberg games. We then propose an extension to this line of
work, where rather than having a hard constraint on the num-
ber of defense resources we have a soft constraint in the form
of costs. In Section 3 we extend previous linear program-
ming techniques for Stackelberg security games to incorpo-
rate benefits and costs of arbitrary security configurations on
individual assets. In Section 4 we offer a principled model of
failure cascades that allows us to capture both the direct and
indirect value of assets. In Section 5 we illustrate our model
with a simple supply chain example. Finally, in Section 6
we use our model to study security decisions in four types
of networks, two based on models of random graph gener-
ation, a simple model of interdependence between critical
infrastructure and key resource sectors and a model of the
Fedwire interbank payment network.

2 Stackelberg Security Games

A Stackelberg security game (Kiekintveld et al. 2009) con-
sists of two players, the leader (defender) and the follower
(attacker), and a set of possible targets. The leader can de-
cide upon a randomized policy of defending the targets, pos-
sibly with limited defense resources; we say that the leader
thereby commits to a mixed strategy. The follower (attacker)
is assumed to observe the randomized policy of the leader,
but not the realized defense actions. Upon observing the
leader’s strategy, the follower chooses a target so as to max-
imize its expected utility.



In past work, Stackelberg security game formulations fo-
cused on defense policies that were costless, but resource
bounded. Specifically, it had been assumed that the defender
has K fixed resources available with which to cover (sub-
sets of) targets. Additionally, security decisions amounted
to covering a set of targets, or not. While in numerous set-
tings to which such work has been applied (e.g., airport se-
curity, federal air marshall scheduling) this formulation is
very reasonable, in other settings one may choose among
many security configurations for each valued asset, and, ad-
ditionally, security resources are only available at some cost.
For example, in cybersecurity, protecting computing nodes
could involve setting anti-virus and/or firewall configuration
settings, with stronger settings carrying a benefit of better
protection, but at a cost of added inconvenience, lost pro-
ductivity, as well as possible licensing costs. Indeed, costs
on resources may usefully take place of resource constraints,
since such constraints are often not hard, but rather channel
an implicit cost of adding further resources.

To formalize, suppose that the defender can choose from a
finite set O of security configurations for each target ¢t € T,
with |T| = n. A configuration o € O for target ¢t € T in-
curs a cost ¢, to the defender. If the attacker happens to
attack ¢ while configuration o is in place, the expected value
to the defender is denoted by U, ,, while the attacker’s value
is V,+. A key assumption in Stackelberg security games is
that the targets are completely independent: that is, a joint
defender and attacker decision concerning one target has no
impact on the values of others, and total defender and at-
tacker utilities are additive over all targets. We revisit this
assumption below when we turn to networked (and general
interdependent) settings. We denote by g, ; the probability
that the defender chooses o at target ¢, while a; denotes the
probability that the attacker attacks target ¢.

3 Computing Optimal Randomized Security
Configurations

Kiekintveld et al. (2009) previously introduced the ERASER
algorithm, which is a Mixed Integer Programming (MIP)
formulation for computing optimal randomized security
policies in Stackelberg security games. We first show how
to extend this MIP formulation to arbitrary security config-
urations, as well as to incorporate costs of such configu-
rations. We then proceed to offer an alternative formula-
tion involving multiple linear programs (in the same vein as
the initial multiple-LP formulation for general Stackelberg
games (Conitzer and Sandholm 2006)) and, finally, formu-
late this problem as a single linear program.

3.1

The MIP formulation is shown in Equations 1- 7. Equations
2 and 3 force the attack vector to attack a single target with
probability 1. This captures the well-known observation that
a deterministic choice of the best of n targets to attack is op-
timal for the attacker (Kiekintveld et al. 2009). Equations 4
and 5 force the configuration decision for each target to be
a valid probability distribution over O. In Equations 6 and
7, Z is some constant which is larger than the highest util-
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ity achievable in the game. Consequently, Equation 6 will
only bind when a; = 1. This, combined with the fact that
u is maximized in the objective, implies that in an optimal
solution, u = ZO Us,: - qo,+ for the target that is attacked.
Consequently, u corresponds to the optimal expected utility
of the defender.

The right-hand-side of Equation 7 will similarly only bind
when a; = 1. Since v is forced by the left-hand-side of
Equation 7 to be at least the expected attacker utility from
attacking any target, and must be exactly equal to the ex-
pected utility of the attacked target, it must therefore be
the attacker’s optimal expected utility given the defender’s
mixed strategy commitment q.

max U — Z ZCOJ “qot (1)

t o
S.t.

Vi a; € {0,1} (2)

da=1 (3)
t

vo,t qo,t € [07 1] (4)

v, D dor=1 )

Ve U= Upt-Gor <(1—ar)-Z (6)

Ve OSU—ZVo,t'Qo,tS(l—Gt)'Z (7

3.2 Multiple-LP Formulation

In reformulating the MIP above as a collection of LPs, we
note that the lone integer vector a in the MIP formulation
does not have combinatorial structure. Rather, it chooses a
single target from n possibilities. Considering each of these
possibilities for attack separately then yields n linear pro-
grams, and the defender can simply choose the solution with
the highest expected value (u) as the optimal mixed strategy
commitment. The resulting formulation as n LPs is shown
in Equations 8-11.

V£ max Z U075q£7£ - Z Z Co,tqit (8)
o t o
S.t.
Vot dbs € [0,1] ©)
2 S =1 (10)
o
Ve S Voudh, <3 Voudh;

Notice that since the potential target is identified in each
of n linear programs, we are able to compress the set of
constraints, removing the now-redundant variables » and v.
Each program now has a clean interpretation, just as in the
original multiple-LP formulation due to Conitzer and Sand-
holm: for each target, we force the attacker to prefer that
target over all others. The intuition behind this is that in an



optimal solution, the attacker must (weakly) prefer to attack
some target, and consequently, one of these LPs must corre-
spond to an optimal defense policy.

3.3 Single Linear Program Formulation

Starting with the multiple-LP formulation above, it is now
not difficult to construct just a single LP that aggregates all
of these. We cannot do so immediately, however, because
some of the n LPs may actually be infeasible: some targets
may not be optimal for the attacker for any defense policy.
Consequently, we must prune out all such targets in order to
ensure that the combined LP is feasible. Formally, it suffices
to check, for each target { that

maxV, ; > max min V,, ¢, (12)
o ’ o
that is, that £ is not strictly dominated for the attacker. Let

T C T be the set of targets for which Equation 12 holds.
The aggregate single-LP formulation is then shown in Equa-
tions 13-16.

> <Z Uydh; =D > co,tqf},t> (13)
t o

max
teT o
S.t.
Vio ¢t , €0,1] (14)
Vi Sgh, =1 (15)
Vi Z Voudy: < Z Vo,fq(t),{ (16)

Notice that we can easily incorporate additional linear
constraints in any of these formulations. For example, it is
often useful to add a budget constraint:

i
Vit Zco,t%,t < B.
o

Below we utilize this single-LP formulation, without the
budget constraint.

4 Incorporating Network Structure

Thus far, a key assumption has been that the utility of the
defender and the attacker for each target depends only on
the defense configuration for that target, as well as whether
it is attacked or not. In many domains, such as cybersecu-
rity and supply chain security, key assets are fundamentally
interdependent, with an attack on one target having poten-
tial consequences for others. In this section, we show how
to transform certain classes of problems with interdependent
assets into a formulation in which targets become effectively
independent, for the purposes of our solution techniques.
To begin, let w, ;(a) be an intrinsic worth of a target ¢ to
the defender when it is protected by a security configuration
o and the attacker employs a probability vector a with aj}
specifying the probability of attacking target ¢’. Suppose
that the attacker chooses to attack a target ¢ (and only ?).
Further, assume that the defender and attacker utilities are
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additive in target-specific worths. The expected utility U, ¢
is then

ont = E[Z Wor ¢ (at = 1)] = ZE[wO/,t/(at = 1)]7

where o’ denotes the defense configuration at target ¢'. From
this expression, it is apparent that in general, U, ; depends
on defense configurations at other targets, and therefore tar-
gets cannot be readily decoupled. However, under the fol-
lowing assumption, we recover target independence:

Assumption 1. For all t and t' # t, wy p(a; = 1) =
Wy (at = 1)

One way to interpret this assumption is that once a par-
ticular target is compromised, the fault may spread to others
which depend on it even if these assets are very well pro-
tected. This hearkens back to the line of research on interde-
pendent security (Kunreuther and Heal 2003) where this as-
sumption was operational. One example of such interdepen-
dence given by Kunreuther and Heal (2003) is airline bag-
gage screening: baggage that is transferred between airlines
is rarely thoroughly screened, perhaps due to the expense.
Thus, even while an airline may have very strong screen-
ing policies, it is poorly protected from luggage entering its
planes via transfers. Cybersecurity has similar shortcom-
ings: defense is often focused on external threats, with little
attention paid to threats coming from computers internal to
the network. Thus, once a computer on a network is compro-
mised, the attacker may find it much easier to compromise
others on the same network. Use of common operating envi-
ronments exacerbates that further: once an exploit is found,
it can often be reused to compromise other computing re-
sources on a common network.

Under the assumption above,

Upt = Elwo(ar = 1)] + Y Efwy(a; = 1)],
t/F#t

and thus U, ; for all ¢ do not depend on defense configura-
tions at other targets ¢’. By a similar argument and an anal-
ogous assumption for the attacker’s utility, we recover com-
plete target independence required by the linear program-
ming formulations above.

In general, one may use an arbitrary model to compute
or estimate Efw, (a; = 1)] above. Indeed, often simu-
lation tools are available to perform the analysis of global
consequences of attacks on particular pieces of the infras-
tructure (Dudenhoeffer, Permann, and Manic 2006). Nev-
ertheless, we offer a specific model of interdependence be-
tween targets that is rather natural and applies across a wide
variety of settings. Suppose that dependencies between tar-
gets are represented by a graph (7', E'), with T the set of tar-
gets (nodes) as above, and E the set of edges (,t), where
an edge from ¢ to ¢’ (or an undirected edge between them)
means that target ¢’ depends on target ¢ (and, thus, a suc-
cessful attack on ¢ may have impact on t'). Each target
has associated with it a worth, w; as above, although in this
context this worth is incurred only if ¢ is affected (compro-
mised, affected by a flaw that spreads from one of its de-
pendencies, etc). The security configuration determines the



probability z,; that target ¢ is compromised (affected) if the
attacker attacks it directly and the defense configuration is
o. We model the interdependencies between the nodes as
independent cascade contagion, which has previously been
used primarily to model diffusion of product adoption and
infectious disease (Kempe, Kleinberg, and Eva Tardos 2003;
Dodds and Watts 2005). The contagion proceeds starting at
an attacked node ¢, affecting its network neighbors ¢’ each
with probability p; ,». The contagion can only occur once
along any network edge (that is, the biased coin is only
flipped once), and once a node is affected, it stays affected
through the diffusion process. The simple way to conceive
of this is to start with the network (7', E) and then remove
each edge (¢, ") with probability (1 — p; 4 ). The entire con-
nected component of an attacked node is then deemed af-
fected. The entire framework is illustrated in Figure 1.

Cascade model

Defender values

o

Attacker values

Utility
evaluation

Game-theoretic
(Stackelberg)
technique

Defense
strategy

Attacker utilities

Figure 1: Illustration of the framework for computing opti-
mal randomized defense strategies in networked domains.

4.1 Computing Expected Ultilities

Given the independent cascade model of interdependencies
between targets, we must compute expected utilities, U, ;
and V,, ;, of the defender and the attacker respectively. In
general, we can do so by simulating cascades starting at ev-
ery node ¢, with expected utilities estimated as sample aver-
age utilities over K simulated cascades (expectation in this
case is with respect to random realizations of attack success
for specific targets as well as edges that become a part of the
failure contagion. In the special case when the network is
a tree, however, we can show that expected utilities can be
computed exactly in linear time.

Theorem 1. Given an undirected tree (T, E), an assigned
worth for each node (wy), and a probability of spread over
each edge p, v/, we can calculate the expected utility at each
target in O(n).

Proof. Let us define the neighbors of a target ¢ as V;. By
definition, the expected utility of a given node t (U, ) is
the direct utility at that node (z, ;w;) plus the expected util-
ity due to the cascading failure. The expected utility due
to cascading failure is zo¢ >4, wyp(failure(t')|a; = 1).
Since this is a tree, there is only one path between any pair of
nodes, which means we can express p(failure(t')|a; = 1)
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as the product of probabilities of the edges on the path be-
tween ¢ and ¢’. Next, let us consider the set of paths gener-
ated by each pair of nodes in the tree. If we organize these
paths by the edges they contain (and use linearity of expec-
tation), we can express the expected utility of the contagion
spreading across an edge (t,t'), E[U )], as:

ElUqn] = pey | we + Z E[Us 1] (17)
L EN, " F#t
Thus, we can reason that for each node ¢:
Uo,t = Zo,tUtv
where
U, = w, + Z E[U ) (18)

t’€Ny

Now let us describe a two-pass algorithm for calculating
U, for all t. First, choose an arbitrary node to be the root
of the tree. In the first pass, we calculate the expected loss
due to each edge from parent to child from the bottom of the
tree upward. In the second pass, we calculate the expected
loss on each edge from child to parent from the top of the
tree downward. We can model this as a message passing
algorithm, where calculating E[U; ;)] is done by passing
a message from ¢’ to . We can see by Equation 17 that
the necessary inputs to calculate E[U; ;)] are the messages
from Ny \ ¢ to t'. We will now show that at the time that each
of these messages is generated, all of the necessary inputs
will be available.

Consider the edges between a given node ¢ and its neigh-
bors. Unless ¢ is the root, one of these edges will be between
t and its parent P, and the rest (possibly 0 in the case where
t is a leaf node) will be between ¢ and its children. Since in
the first pass we are passing messages from child to parent
and a node has only one parent, we will have received mes-
sages from N; \ P; when we generate the message from ¢ to
P,.

For the second pass, when we pass information to a child
of t, C, we will have received messages from NVy, thus we
again have the necessary information to generate the mes-
sage from ¢ to Cy.

Finally, once a node has received messages from all of
its neighbors we can easily calculate the expected loss at
each node by Equation 18. However, to achieve a runtime
of O(n), we need to be slightly more clever in how we store
these values. By combining Equations 17 and 18 we can
reason that E[U 4] = ps+ (Uy — E[Uq 1]). This allows
us to give an equivalent definition of Uy:

Uy = wy + Z P (Upy — E[U(t',t)D-
teEN,

(19)

Now, consider the same two-pass algorithm as before,
but rather than storing the expected loss for every edge, we
merely store a running total of the expected loss at each
node. We argue that by the same reasoning as before that
the necessary calculations will have been performed before
we need them as inputs. However, we still need to show that
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Figure 2: A simple automotive supply chain example.
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we can recover the correct value out of the values stored
at the two nodes. When we calculate E[U(p )] in the
first pass, the value stored at C' will be (Uc — E[U(c,p)]).
since we have not yet updated C' with E[U(¢ py]. However,
when we reach this edge on the downward pass to to cal-
culate E[U(c, p)], P will have Up stored. Since the value
stored at C'is still (Uc — E[U(c,p)]), we can easily calcu-
late E[Uc,py| = pc.p(Up — ElUwpc)l) = popr(Up —
pp,c(Uc — E[U(c,p)])) and update C.

Since we visit each edge twice, and perform a constant
amount of work each time, we can bound the runtime by
O(|E|). Since in a tree |T| — 1 = |E|, we can also bound
the runtime by O(n). O

5 Supply Chain Example

In this section we illustrate the tools introduced above with
a simple example. Consider a seven-node supply chain (di-
rected acyclic graph) shown in Figure 2. We suppose that
the entire supply chain (or at least the relevant security deci-
sions) is controlled by a single firm which is primarily con-
cerned with manufacturing two types of cars, one more prof-
itable than the other. The actual components that ultimately
comprise the cars are not intrinsically valuable to the manu-
facturer (or are valued so low relative to the final product as
to make them effectively not important in this decision). All
parts of the supply chain may be inspected at some cost ¢, or
not (in which case no cost is incurred).

The first step in our framework is to compute (or esti-
mate) the expected utility for each node in the supply chain.
To do this, we first specify the probability that an attacked
node is affected (in this case, becomes faulty), z, ;. We let
%o+ = 1 when node t is not inspected and z,; = 0 when
it is. Next, we must specify the contagion probabilities for
each edge. We use p; v = 0.5 for all edges here. The re-
sults are color coded in Figure 3 (left): the darker colors
correspond to more valuable nodes. Note that while intrinsic
worth is only ascribed to the final products, all components
carry some value, due to their indirect impact on the final
product (for example, a faulty part will, with some prob-
ability, make the component which uses it faulty as well).
Supposing now that the game is zero-sum, the expected util-
ities of the attacker are completely determined by the de-
fender’s utilities, and we can use these as an input into the
linear programs above. We show the results for two differ-
ent inspection costs, cpign = 0.1428 and ¢4, = 0.0179 in
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Solution:
c=0.0179

Solution:
c=0.1428

Expected Utility

Figure 3: Randomized defense configurations for the simple
supply chain example under two defense cost scenarios.

Figure 3. The higher cost setting (Figure 3, middle) yields
a security configuration in which five of the seven nodes in-
cur some probability of inspection, with the heavier colors
corresponding to high inspection probability. The low-cost
setting (Figure 3, right) yields a solution in which every node
is defended with probability 1.

6 Experimental results

In this section we apply our framework to several networked
domains. First, we consider networks generated from two
major generative random graph models: Erdos-Renyi and
Preferential Attachment (Newman 2010). In addition, we
explore two networks derived from real security settings:
one that models dependencies between critical infrastruc-
ture and key resource sectors, as inferred from the DHS
and FEMA websites, and another that captures payments be-
tween banks in the core of the Fedwire network.

For the randomly generated networks, all data presented is
averaged over 100 graph samples. Since we generate graphs
that may include undirected cycles, we obtain expected utili-
ties for all nodes using 10,000 simulated cascades. (We later
revisit this issue and show that this is more than a sufficient
number for problems of this scale). In this section we as-
sume that the defender has two strategies at every target, one
with a cost of 0 which stops attacks 0% of the time and one
with a cost of ¢ which prevents attacks 100% of the time,
and, additionally, that we have a zero-sum game between
the defender and attacker.

Our first set of results pertain to undirected Erdos-Renyi
(G(n, pe)) networks, with 100 nodes (n) and edge probabil-
ity p. ranging from 0.0025 to 0.08 (average degree between
.25 and 8). We assign each node a worth drawn uniformly
at random from [0, 1] and assign each edge a cascade prob-
ability of .5. Figure 4 shows how the average cost and ex-
pected loss (plus their sum which we will refer to as total
loss) varies when we vary c for the case where p. = .02
(average degree of 2).

This plot shows two phase shifts: one at a defense cost
of approximately 0.01 and the second near a defense cost of
0.03. For costs below 0.01, the total loss is entirely due to
cost, as the optimal defense strategy is to defend all of the
targets 100% of the time. For 0.01 < ¢ < 0.03, the amount
spent on defense is still rising, but the optimal defense policy
no longer protected each node with probability 1. As a re-
sult, the expected loss becomes non-zero in this cost regime.
When ¢ > 0.03, the total amount spent on defense starts
to fall (even though average costs are still rising), while the
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Figure 4: Expected loss, cost, and their sum in 100-node
Erdos-Renyi networks as defense cost increases.

expected loss continues to rise. Finally, when c reaches ap-
proximately 20, the amount spent on defense becomes 0, and
there is no subsequent change to either the expected loss or
defense spending.

For the second set of results, we generated undirected
Preferential Attachment networks using the Barabdasi-Albert
model, with n = 100 and with the degree of new nodes
ranging from 1 to 4 (average degree between 2 and 8). We
used a 4-node open chain as a seed graph. As before, we
assign each node a worth drawn uniformly at random from
[0, 1] and each edge has a cascade probability of .5. Figure 5
shows how the average cost, expected loss and total loss vary
with ¢ for the case where the initial degree of new nodes is
1 (average degree approximately 2).

100 node preferential attachment graph with E[degree]=2
12
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Defense cost per node

Figure 5: Expected loss, cost, and their sum in 100-node
Preferential Attachment networks as defense cost increases.

Unsurprisingly, there again appears to be a point at which
100% defense is no longer reasonable, near ¢ = 0.03. Per-
haps more interesting is the fact that the amount spent on
defense starts to decrease at this point, in contrast with the
Erdos-Renyi networks. It is also notable that the amount
spent on defense doesn’t monotonically decrease for ¢ >
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0.03, but actually shows a slight increase when 0.32 < ¢ <
2.56. If we look at individual instances here, we find that
the probability of defending targets is still falling within this
range, but not nearly as quickly as the cost of defense is ris-
ing, which causes the overall increase in defense spending.
Just as in Erdos-Renyi networks, once defense cost reaches
20, there is are no further expenditures on defense.

Figure 6: Critical Infrastructure network.

Next, we generated a model of the dependencies of the
US critical infrastructure and key resource sectors based on
the information on the DHS and FEMA websites. This
model (pictured in Figure 6) contains 18 nodes and 94 di-
rected edges. We assigned each node a worth in the [0, 1]
range, but only limited actual values to three possibilities:
very important (w; = 1), somewhat important (w; = 0.5),
and relatively unimportant (w; = 0.2). We also classified
importance of each dependency into two categories: very
significant (corresponding to the probability of contagion
prr = 0.5) and less significant (with p, ;+ = 0.1). Figure 7
shows how the average cost and expected loss (plus their
sum) varies when we vary ¢, giving a now-familiar pattern.
Note that while the number of nodes here is only 18, by the
time ¢ = 1, expected total loss already approaches the value
close to 100-node Erdos-Renyi and Preferential Attachment
networks. The average (per-node) loss is, thus, much higher,
primarily because the critical infrastructure and key resource
network is substantially more dense.

The last network model we used is the topology of the
core of the Fedwire Interbank Payment Network (Soramaki
etal. 2007) shown in Figure 8. This model contains 66 nodes
and 181 undirected edges. In this case we simulate a pol-
icymaker with an impartial interest in keeping the system
afloat. To reflect this, we assigned each node a worth of .5.
We were able to infer a rough estimate of the relative magni-
tude of the worth of the payments that occurred between the
various banks, which we used to assign failure probabilities
between .05 for low volume edges and .5 for high volume
edges. Figure 9 shows how the average cost and expected
loss (plus their sum) varies when we vary c. Interestingly,
the expected loss and cost follow here a very similar pattern
to that we observed for Preferential Attachment networks.

Figure 10 shows a comparison between the total loss per
node (scaled total loss) for three of these four models. We
omit the critical infrastructure model because edge density
and different average worth cause its scaled total loss to be
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Figure 7: Expected loss, cost, and their sum in the critical
infrastructure network as defense cost increases.

Figure 8: The core of the Fedwire Interbank Payment Net-
work (based on Soramaki et al. (2007)).

Core of the Fedwire Interbank Payment Network (66 nodes, 181 edges)
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Figure 9: Expected loss, cost, and their sum in the core of
the Fedwire network as defense cost increases.

far higher than the other three models. We can observe that
the total loss in all of these models not only follows the same
general S-curve pattern but actually seems to follow approx-
imately the same path. If we restrict our attention to just

55

the two randomly generated models, we can see that with a
few small exceptions, these two models are almost identical
until a defense cost reaches 1. However, for ¢ > 10, all of
these models have flattened out at the steady state, and the
differences here are entirely due to the differences in max-
imum expected loss for each model (based in large part on
differences in topology).

Expected total loss over different models (scaled)

100 node Preferential Attachment ———
100 node Erdos-Renyi -

0.12 | 66 node Fedwire - |

0.14 -

0.1

0.08 -

Magnitude
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0 L L
0.01 0.1 1 10
Defense cost per node

100

Figure 10: Expected total loss: comparison across different
network structures.

So far we assumed that the information about network
structure is known. A complementary question is what ef-
fect does incomplete information about network structure
has on the quality of decisions. We address this question in
the context of Erdos-Renyi networks by noting that the ul-
timate realization of the network over which cascades prop-
agate remains Erdos-Renyi. We can thus study the effect
of incomplete information by taking a fixed network, and
comparing decisions based on a limited number of conta-
gion samples to “ground truth”, which we define to be the
result after 100,000 samples. What we obtain can also be
used as a guideline for the effect of sampling accuracy in
the actual solver. The results are shown in Figure 11. While
the solutions found with an extremely small number of sam-
ples do rather poorly, as we increase the number of samples
we quickly converge upon solutions that do almost exactly
as well as the “ground truth”. Thus, the decisions are rela-
tively robust to small amounts of noise in estimating the true
network structure in Erdos-Renyi networks.

Finally, let us consider how the cost of defense, the ex-
pected loss, and total loss change as we increase the average
degree from .25 to 8 (increasing network density from 0.005
to 0.16) for a fixed defense cost of .04. Intuitively, as the
network density rises, so does the threat of large contagion.
From the results in Figure 12 we can see two consequences
of this. First, the total loss increases as the average degree
increases. This follows from the fact that as the degree in-
creases, also does the expected loss from an undefended at-
tack. Furthermore, at lower degrees, a large fraction of the
total loss is from the expected loss, as defense is not cost
efficient when an attack is unlikely to spread to a signifi-
cant fraction of the graph. However, as the degree increases,



100 node Erdos-Renyi graph with E[degree] = 2 and ¢ = .04
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Figure 11: Expected loss, cost, and the sum under incom-
plete information about network structure.

there is a clear increase in the fraction of the total loss due to
defense costs, eventually reaching the point of 100% when
average degree is between 2 and 4.

100 node Erdos-Renyi graph with ¢ = .04
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Figure 12: Expected loss, cost, and their sum in 100-
node Erdos-Renyi networks as a function of network density
(equivalently, expected degree).

7 Conclusion

We present a framework for computing optimal random-
ized security policies in network domains, extending pre-
vious linear programming approaches to Stackelberg secu-
rity games in two ways. First, we construct a single linear
programming formulation which incorporates costs of arbi-
trary security configurations and may be extended to enforce
budget constraints. Second, we demonstrate how to trans-
form a general setting with interdependent assets into a secu-
rity game with independent targets, allowing us to leverage
the compact linear programming formulation for security
games. We apply our framework to study four models of in-
terdependent security. Two are based on standard generative
models of random graphs, and two others use real networks
representing interdependent assets. We show that there is a
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surprising bi-modal behavior of expected utility in preferen-
tial attachment networks as defense costs increase, that such
networks lead to greater expected losses than Erdos-Renyi
networks when defense costs are high. We also demonstrate
that increased network density has substantial deleterious ef-
fect on expected losses of targeted attacks and that, as a re-
sult, highly interdependent networks such as that represent-
ing critical infrastructure sector dependence are extremely
difficult to defend. Finally, we show that having some infor-
mation, even very limited, about the true network structure
can be of substantial value in guiding high quality defense
decisions.
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