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Abstract 
Despite recent impressive progress in automated planning 
and navigation tools, artifacts still lack robustness and 
flexibility of biological systems. In order to mimic biology, 
it is necessary to use principles of dynamics and architecture 
found in the brain. Here we translate our biologically 
inspired model of spatial learning and navigation 
(Samsonovich and Ascoli, L&M 2005) into a model suitable 
for implementation in spiking networks with STDP 
synapses, based on soon to become available hardware. 
Simulation studies of the model prove its robustness and 
scalability. The approach naturally extends to various types 
of action planning beyond the spatial domain. The 
architecture can be used in autonomous intelligent agents of 
various nature. 

Introduction   
In recent years, considerable progress has been made in 
automated planning and mobile robotics, in particular, 
including low-level trajectory planning for mobile robots 
(e.g. Thrun et al. 2005) and high-level action planning 
based on efficient algorithms. At the same time, existing 
gaps and brittleness separate modern artificial tools from 
solutions found in biology.  
 Many attempts have been made to construct biologically 
inspired higher-level models intended to explain how the 
brain performs navigation (for a recent review, see e.g. 
Nehmzow 2006). In many cases these models are difficult 
to map onto the real brain; also, their practical usefulness 
for solving navigational problems is limited. In order to 
take practical advantage of the theoretically more robust 
and flexible solutions based on biological principles, it is 
necessary to implement them based on elements similar to 
those found in biology: specifically, STDP1 synapses 
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(Song et al. 2000) and spiking neurons.  A substrate for 
implementation can be the hardware currently being 
developed and created based on spiking leaky integrate-
and-fire neurons and STDP synapses (Mead, 1990).  
 A prototype for NeuroNavigator is the spiking network 
architecture that enables spatial learning and pathfinding 
(Ascoli and Samsonovich 2010). During exploration, 
synaptic weights are modified based on an exponential 
STDP rule (Song et al. 2000). The CA3-CA1 network in 
NeuroNavigator  (Figure 1) is divided into submodules 
each corresponding to a particular abstract direction of 
motion: North, East, South, West, etc. Only two 
submodules are shown in Figure 1. 
 During exploration, only those synaptic weights are 
modified in DG-to-CA3 connections that correspond to the 
direction of the last move. At the same time, in CA3-to-
CA1 connections, the rules are identical for all submodules 
and involve additive STDP with homeostatic plasticity. 
 During navigation, all imagined moves are performed in 
parallel, each in its own submodule. The imagined move 
that first causes a spike in a CA1 goal cell is selected and 
performed. As a result, the agent navigates toward the goal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. NeuroNavigator architecture design.  
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Figure 2. A virtual environment where the agent is embedded in 
CASTLE. Arrows represent the assigned entry-exit points. Nodes 
are numbered by letters and numbers from 0 to 19. Each node 
represents a domain in the room. The 4 directions are n, e, s, w. 

Paradigm and Implementation 
In our study, a large environment is represented by a set of 
small graphs connected together into a tree. A node of a 
tree corresponds to a graph, and the graph corresponds to a 
discretization (e.g., Voronoi tessellation in our case) of an 
environment fragment taken at a certain scale: a room, a 
street, a highway network, etc. Figure 2 shows a virtual 
indoor environment implemented in CASTLE (Pope and 
Langley 2008) together with its discrete model. 
 The general paradigm is the following. First, the robot 
explores the hierarchical environment and learns its 
topology and geometry. Then it is asked to navigate to a 
specific goal location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Histograms of path lengths computed over 12 trials. 
Red: shortest path length, blue: NeuroNavigator path length. 

 The developed architecture was implemented in C++ on 
a MacBook Pro. NeuroNavigator interacts with CASTLE 
that provides a virtual embodiment for the architecture, and 
with Matlab to perform on-line data analysis and 
visualization. The implementation easily scales from tens 
and hundreds up to millions of neurons: this is done by 
alteration of a single numerical constant in the code.  

Results and Discussion 
Each node of the hierarchy (a 4-level ternary tree, not 
shown) was associated with a small CASTLE environment 
of a fixed geometry shown in Figure 2. The agent reached 
an arbitrarily set goal in every simulated session. Over 12 
trials, the trajectory toward the goal was always the 
shortest path in the hierarchy and always close to a shortest 
path (if not a shortest path) in the graph. Histograms of 
trajectory lengths are represented in Figure 3. 
 In summary, results presented above demonstrate the 
existence of a highly scalable, biologically-plausible 
solution of the navigation challenge based on a network of 
spiking neurons and STDP synapses. The scalability of this 
approach up to networks of a million of neurons was tested 
computationally. The selected strategy based on a 
hierarchical approach to exploration and navigation will be 
further developed elsewhere.  
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