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Abstract

Recognizing human activities from wearable sensor
data is an important problem, particularly for health and
eldercare applications. However, collecting sufficient
labeled training data is challenging, especially since in-
terpreting IMU traces is difficult for human annotators.
Recently, crowdsourcing through services such as Ama-
zon’s Mechanical Turk has emerged as a promising al-
ternative for annotating such data, with active learn-
ing (Cohn, Ghahramani, and Jordan 1996) serving as
a natural method for affordably selecting an appropriate
subset of instances to label. Unfortunately, since most
active learning strategies are greedy methods that select
the most uncertain sample, they are very sensitive to an-
notation errors (which corrupt a significant fraction of
crowdsourced labels). This paper proposes methods for
robust active learning under these conditions. Specifi-
cally, we make three contributions: 1) we obtain better
initial labels by asking labelers to solve a related task;
2) we propose a new principled method for selecting
instances in active learning that is more robust to an-
notation noise; 3) we estimate confidence scores for la-
bels acquired from MTurk and ask workers to relabel
samples that receive low scores under this metric. The
proposed method is shown to significantly outperform
existing techniques both under controlled noise condi-
tions and in real active learning scenarios. The result-
ing method trains classifiers that are close in accuracy
to those trained using ground-truth data.

Introduction
Human activity recognition in real-world settings, such as
the kitchen, has been an significant research topic for house-
hold eldercare, healthcare and surveillance applications.
However, efficiently labeling a large-scale dataset by hand
is still a painful and time-consuming task. Recently, sev-
eral services such as Amazon’s Mechanical Turk (MTurk)
allow researchers to divide the large dataset into thousands
of simpler annotation tasks and distribute those tasks to dif-
ferent workers. MTurk has thus become a a fast, affordable
and effective mechanism for annotating data for supervised
learning models (Vondrick, Ramanan, and Patterson 2010;
Rashtchian et al. 2010).
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However, crowdsourcing is not a panacea for data labeling
for two main reasons. First, it is difficult for human label-
ers (who are typically not experts in the field) to interpret
noisy data generated by body-worn sensors, such as IMU
traces. For this reason, researchers now typically generate
an additional time-aligned channel of information, such as
video captured from the user’s perspective (De la Torre et al.
2008). While such data would not necessarily be available
in actual applications, it serves a vital role in the classifier
training process. Unfortunately, our studies have shown that
even with video data, human labelers generate an unaccept-
ably high rate of labeling errors. In this paper, we propose
augmenting the action labeling task with an object recogni-
tion task (on images). Our models can then exploit informa-
tion about which objects in the scene are being manipulated
by the user to better infer likely actions (similar in spirit to
Wu et al. (2007)).

Second, even with these measures, crowdsourced annota-
tions are observed to generate uneven, subjective and unre-
liable labels. This presents a fundamental challenge to ac-
tive learning: how best to obtain labels (at affordable cost)
given a distributed set of unreliable oracles? We propose
a new active learning paradigm that balances the tradition-
ally myopic selection of instances in active learning (e.g.,
based on proximity of data to the decision boundary) with a
more global term that also considers the distribution of un-
labeled data. Additionally, we build a model that calculates
the confidence for each of the labels obtained through active
learning. Through judicious use of relabeling, we can thus
obtain additional labels for instances that have low rank in
terms of confidence.

Our experiments show that combining our improved se-
lection criterion with confidence-driven relabeling enables
us to affordably train classifiers on noisy crowd-sourced data
that are comparable in accuracy to those trained using noise-
free training data.

Related Work
Activity recognition using body-worn inertial sensors has
been an important research topic for many years, particu-
larly in the context of eldercare and healthcare applications;
see Avci et al. (2010) for a recent survey.

Bao and Intille (2004) and Ravi et al. (2005) recog-
nized simple human activities from data acquired using ac-
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celerometers. Wu et al. (2007) and Pentney et al. (2006)
proposed approaches to estimate complex daily life activ-
ities based on object sequences collected using RFID tags
attached to objects. To bootstrap the learning process,
video data is combined with RFID data to jointly infer the
most likely activity. The Carnegie Mellon University Multi-
Modal Activity Database (CMU-MMAC) aims to provide a
rich source of partially ground-truthed data for research in
this area (De la Torre et al. 2008). Promising results have
been reported using different machine learning techniques
on CMU-MMAC (Spriggs, De la Torre, and Hebert 2009;
Zhao, Wang, and Sukthankar 2010) and we also use it as a
standard dataset to evaluate our proposed methods.

Tong and Koller (2002) and Tong and Chang (2001)
demonstrated the use of Support Vector Machines (SVM)
to construct pool-based active learners for text classification
and image retrieval, respectively. However, many research
issues remain. First, most active learners select the next in-
stance to label in a greedy and myopic manner. Neglecting
the global distribution of data can cause the learner to con-
verge only to a locally optimal hypothesis. A second seri-
ous problem is that the uncertainty sampling is inherently
“noise-seeking” (Balcan, Beygelzimer, and Langford 2006)
and may take a long time to converge. Hierarchical clus-
tering approaches such as Dasgupta and Hsu (2008) provide
the learner with global information about the data and avoid
the tendency of the learner to converge to local maxima.

Crowdsourcing annotation services, such as Amazon’s
Mechanical Turk, have became an effective way to distribute
annotation tasks over multiple workers. Active learning ap-
proaches have recently become popular in this context since
they provide a budget-conscious approach to data label-
ing (Vijayanarasimhan, Jain, and Grauman 2010). Sheng,
Provost, and Ipeirotis (2008) observed the problem that
crowdsourcing annotation may generate unreliable labels.
Since the SVM active learner is greedy and myopic, these
noisy annotations will lead to error accumulation when se-
lecting the next sample. Proactive learning (Donmez and
Carbonell 2008) offers one way to jointly select the opti-
mal oracle and instance with a decision-theoretic approach.
Since we cannot select oracles, our proposed approach se-
lects instances using a combination of loss criteria and ju-
diciously resamples potentially incorrect labels when neces-
sary.

Proposed Approach
Figure 1 presents an overview of our approach. Our goal
is to accurately label large quantities of IMU data with ac-
tivity labels, from which we can train activity recognition
classifiers. Given temporally-aligned video and IMU data,
such as those provided in the CMU-MMAC dataset (De la
Torre et al. 2008), we ask MTurk workers to label short,
automatically-segmented video clips of cooking activities
with the label(s) corresponding to the current action(s). The
list of actions is shown in Table 1.

Unfortunately, we observe that the raw crowdsourced ac-
tion labels are unacceptably inaccurate (see Table 2). Rather
than simply voting among a pool of redundant workers
(which is expensive), we ask each worker to solve a related

Table 1: List of actions

1. close
2. crack
3. open
4. pour
5. put

6. read
7. spray
8. stir
9. switch on

10. take

11. twist off
12. twist on
13. walk

Table 2: Crowdsourced annotation accuracy. The accuracy
of annotations improves when the action labeling task in
video is supplemented with an object identification task. We
further improve on these numbers using relabeling.

Task Label accuracy

Action only 47.97%
Object only 53.11%
Action+Object 62.52%

task that can clean up the original labels. Specifically, we
ask workers to identify which object(s) from Table 3 are vis-
ible in the scene. As detailed below, we train a Bayesian
Network to infer actions based on the set of observed ob-
jects. This approach enables us to significantly improve an-
notation accuracy (see Table 2).

We then apply this framework in an active learning con-
text to iteratively annotate data. As shown in Algorithm 1,
the idea is to select instances according to a mixture of two
criteria: 1) MaxiMin (Tong and Koller 2001) and 2) based
on the proximity of other labeled data. Each step in our pro-
posed approach is described in greater detail below.

Dataset Overview and Feature Extraction
Our experiments use the CMU-MMAC dataset (De la Torre
et al. 2008), which consists of data collected from dozens of
subjects performing several unscripted recipes in an instru-
mented kitchen environment. The data corresponding to a
given recipe consists of approximately 10,000 samples col-
lected at over a period of about 6 minutes. We focus on two

Table 3: List of objects

1. none
2. brownie box
3. brownie bag
4. egg box
5. egg
6. egg shell
7. salt
8. pepper
9. water

10. oil

11. cook spray
12. cap
13. knife
14. fork
15. spoon
16. scissors
17. cupboard
18. drawer
19. fridge
20. stove

21. oven
22. counter
23. sink
24. baking pan
25. frying pan
26. measuring

cup
27. big bowl
28. small bowl
29. paper towel

75



Feature Generation

Index Images

Active Learner

Updated Activity Labels

Sample Selection Activity Annotation

fork bowl

egg

Action & Object Annotation

Mechanical Turk

Oi,1 AiOi,2 Oi,j

yi

...

Activity Estimation

Images

Quantized IMU Data

IMU Data

Figure 1: Overview of the proposed method. Since labeling IMU data is difficult for untrained users, we crowdsource short
activity labels for temporally-aligned video clips supplemented with object labels for still images. The object labels generate
more accurate activity labels. The active learning selects new instances based on a new criterion that combines local and global
loss and we request relabels for data that falls below an estimated confidence threshold. The resulting system can generate
accurate activity recognition classifiers from unreliable crowdsourced data.

modalities of data: first-person video and IMU.
The egocentric video was collected from a head-mounted

video camera that recorded the objects and actions per-
formed by the subject during the cooking activity at 30Hz.
The IMU traces were aligned to the video and recorded us-
ing 3-axial accelerometers, 3-axial gyroscopes, and 3-axial
magnetometers mounted on the subject’s wrists, ankles and
body, resulting in a 45-dimensional data vector, sampled at
125Hz.

The IMU data was processed using a 256-sample slid-
ing window with 50% overlap between consecutive frames.
Thus, each window corresponds to 2.05 seconds of data.
Four features are extracted from each axis of the sensor:
mean, standard deviation, energy and entropy, resulting in
a 180-dimensional feature vector.

Inferring Actions from Visible Objects
As discussed earlier, to compensate for the poor annotation
accuracy of raw crowdsourced action labels, we ask MTurk
workers to annotate which objects are visible in each scene.
We use these as a secondary source from which to infer ac-
tion labels.

Given a video frame i with true action label yi, we define
Oi and Ai to be the object and action labels collected from
MTurk, respectively. By assuming that the action and ob-

ject labels are conditionally independent, we construct the
following model:

P (yi,Oi,Ai) = P (Oi|yi)P (Ai|yi)P (yi). (1)
Parameter learning is performed using maximum likelihood
estimation and the conjugate prior is modeled as a Dirich-
let distribution. Table 2 summarizes the improvements we
obtain using this method.

Although this model improves annotation accuracy, our
system must still guard against workers that provide ran-
dom labels and flag unreliable labels. To identify such labels
and tag them for relabeling, we compute a confidence score
function CS(y|Oi,Ai) based on the Bayesian estimate that
evaluates the reliability of collected labels:
CS(y|Oi,Ai) = H(y,Oi,Ai) + c · log(N(Oi,Ai)), (2)
where H(y|Oi,Ai) denotes the entropy over the labels es-
timated using Equation 1; c · log(N(Oi,Ai)) is a term that
penalizes workers who give few or no labels for the task on
MTurk; N(·) denotes a counting function and c is a weight
constant. Annotated instances that score poorly in terms of
their confidence score are selected for relabeling.

Active Learning
Active learning seeks to iteratively obtain labels for data
by identifying, at each iteration, the most uncertain sam-
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ple. More formally, let T = {x1,x2, . . . ,xl} be a set
of labeled instances, with corresponding labels given by
L = {y1, y2, . . . , yl}. We also define a set of unlabeled
instances as U = {xl+1,xl+2, . . . ,xn}. The SVM classi-
fication problem can be represented as finding the optimal
hyperplane with labeled samples that satisfies

minw,b,ε C
∑l

i=1 εi + ‖w‖2,
s.t. yi(w · xi + b) ≥ 1 i = 1, ..., l

(3)

where εi is a slack term, such that if xi is misclassified, C
is the penalty for the misclassified samples. All possible hy-
perplanes that could separate the training data as f(xi) > 0
for yi = 1 and f(xi) < 0 for yi = −1 are consistent with
the version space V . The most uncertain sample is identi-
fied by selecting the sample that halves the version space
V . (Tong and Koller 2002) describe three strategies to iden-
tify the most uncertain sample with SVM classifier. We ap-
ply the MaxiMin Margin strategy which selects samples that
have the greatest difference for a given positive and negative
label. For each unlabeled data xi, the loss function of the
MaxiMin Margin approach can be represented as:

LossSVM(xi) = min
xi∈U

(V +(xi), V
−(xi)) (4)

where V +(xi) is the size of the version space from label-
ing xi as +. The loss function is equal to the smaller value
of the V +(xi) and V −(xi) defined by these possible hyper-
planes. Although Equation 4 applies to a binary classifica-
tion problem, it can be easily redefined for multiclass set-
tings by computing the product of the loss function for the
appropriate classification hyperplanes from all classes.

However, a serious issue with the MaxiMin Margin cri-
terion for instance selection is that it is a greedy strategy
that can be very sensitive to noise among the existing labels,
causing the optimization to fall into a local minimum. To
avoid this problem, we propose including a second, more
global, term into the loss:

Losscluster(xi) =
∑

xj∈T
f(xi,xj). (5)

The function f(xi,xj) = h(xj ,xck) log(||xi − xj ||) evalu-
ates the uncertainty of the sample by computing the distance
between the unlabeled sample of xi and the labeled sample
xj . h(xj ,xck) = 1 if the label of xj is the same as the la-
bel of centroid point xck , otherwise h(xj ,xck) = −1. || · ||
denotes the Euclidean distance between two samples. The
centroid point xck is obtained by first performing k-means
clustering on the unlabeled set and selecting the cluster cen-
ter closest to xj .

Finally, we combine both loss functions to estimate the
uncertainty of unlabeled samples. The sample that we select
is obtained using:

x∗ = arg max
xi∈U

LossSVM(xi) + λ · Losscluster(xi), (6)

where λ denotes the mixing weight between the two criteria
and depends on the expected annotation accuracy. Given a
priori knowledge about annotation accuracy, one could set
λ appropriately — with reliable labels, a lower value for λ

Input: The dataset T , the unlabeled set U = T , the
labeled set S = Ø, and the number of initial
samples k.

Output: The fully labeled dataset S = T

Use k-means to cluster U into clusters
{c1, . . . ci . . . , ck} ;
Query labels for X = {x1, . . . , xi, . . . , xk} where
xi ∈ T is the sample closest to the cluster centroid ci;
Update T = T ∪ X and U = U \ X ;
Train initial classifier w0 using training set T ;
while the classifier wj has not converged do

Use classifier wj to calculate the loss LossSVM(xi);
Estimate the loss function Losscluster(xi) using
Equation 5;
j ← j + 1;
Choose xj = x∗ via Equation 6;
Update the labeled set T = T ∪ {xj} and the
unlabeled set U = U \ {xj};
Train the SVM classifier wj with set T;

end
Algorithm 1: Proposed active learning algorithm

suffices. In practice, since the expected accuracy of labels
is unknown, we employ cross-validation with a hold-out set
to determine λ. The overall algorithm is presented in Algo-
rithm 1.

Experiments
The CMU-MMAC dataset is an unlabeled dataset. To test
our annotation strategies, we use the label set posted on the
CMU-MMAC website1 as ground truth labels. This con-
sists of labels for 16 subjects who baked the brownie recipe,
where the annotations were manually generated from the
video data alone.

We present results from two sets of experiments. In the
first set, we perform a controlled study by corrupting labels
with known quantities of noise to evaluate the robustness
of our active learning strategies to annotation noise. The
second set examines how action annotations improve using
the model trained on our auxiliary object recognition task,
and how the relabeling strategy boosts the performance of
active learning.

Experiment 1: Robustness to Annotation Noise
The first set of experiments examines the robustness of var-
ious active learning strategies to annotation noise. Figure 2
compares four active learning sample selection strategies un-
der four scenarios with increasing levels of noise (0%, 10%,
30%, 50%). The selection strategies are: 1) a baseline “ran-
dom” strategy (green); 2) the standard criterion, LossSVM,
i.e., MaxiMin (Tong and Koller 2001), denoted as “SVM”
(blue); 3) our global criterion, Losscluster, denoted as “Clus-
ter” (black); and 4) the proposed criterion that combines
both losses (Eqn 6), denoted as “Proposed” (red). We also

1
http://www.cs.cmu.edu/˜espriggs/cmu-mmac/annotations/

77



show the error rate of a gold-standard classifier trained using
all of the ground-truth data (which serves as the lower bound
on the error), denoted as “Ground” (yellow).

We make several observations. First, in the noise-free
case, “Simple Margin” and “Mix” perform best, and “Ran-
dom” worst. This is consistent with our expectations that the
standard criterion is well suited for noise-free scenarios, and
that our proposed criterion can match this. Next, in the 10%
noise case, we see that “Simple Margin” degrades slightly
but “Mix” continues to dominate since it is able to combine
both myopic and global information. The trend continues in
the 30% noise scenario, but now although neither of the base
criteria performs better than random chance, the proposed
method continues to do best. Finally, under the challeng-
ing conditions of 50% noise, none of the selection strate-
gies are able to outperform random selection. From this, we
can conclude that improving the criteria for selection in ac-
tive learning can effectively counter moderate noise but is
not sufficient by itself when dealing with very noisy anno-
tations. This validates our earlier observation that crowd-
sourced labels may require judicious relabeling in addition
to improved active learning strategies.

Experiment 2: Impact of Relabeling
In this experiment, we compare the accuracy of annotations
obtained from several sources (see Table 2, discussed ear-
lier). Specifically, we examine the following conditions:
1) action annotations generated by MTurk from video clips
alone, denoted “Action only”; 2) action predictions inferred
using our model from the secondary task of crowdsourced
object annotations, denoted “Object only”; and 3) actions
inferred by combining crowdsourced action and object an-
notations, denoted “Action+Object”. We see that the label
noise from the raw data is unacceptable (48%). A surprising
finding is that we can actually do better by inferring actions
from objects alone (53%). More importantly, we see that
combining these two noisy sources of annotations enables
us to achieve 63% annotation accuracy. Since 63% accuracy
falls between the 30% and 50% noise scenarios discussed in
Figure 2, we confirm that relabeling is essential.

Figure 3 details the relationship between the relabeling
fraction and the resulting improvement in annotation accu-
racy. For example, to achieve a 95% annotation accuracy
(< 5% noise), we should request about 60% of the data to
be relabeled.

Figure 4 shows the error rates for the proposed active
learning method, with and without relabeling, on real-world
data. The green line uses the raw labels collected from Me-
chanical Turk. Note that even with the improved criterion
for active learning, the error rate barely drops. The blue line
uses action labels inferred from both action and object la-
bels. While the error rate is somewhat better, we see that
the overall performance is still poor. Finally, the red line
shows the impact of relabeling 46% of samples, selected us-
ing the confidence score discussed above. Here we see a dra-
matic difference: the error rates on this dataset are very close
to those obtained by active learning on a noise-free ground
truth dataset (black line). This experiment confirms that
each of our stated contributions (improved selection criteria,

inferred labels from multiple crowdsourced annotations, and
confidence-based relabeling) is necessary to demonstrate ac-
curate training from noisy crowdsourced data.

Conclusion
Although crowdsourcing annotations using active learning
is an attractive and affordable idea for large-scale data label-
ing, the approach poses significant difficulties. Our study
in the domain of wearable sensor-based activity recogni-
tion shows that a straightforward approach using the raw
annotations obtained from Mechanical Turk in conjunction
with standard margin criteria for SVM-based active learn-
ing would fail due to the high degree of annotation noise.
This paper makes three contributions that enable us to ro-
bustly train under these challenging conditions. First, we in-
fer more accurate action annotations by combining objects
with actions in a Bayesian framework. Second, we propose
a new criterion for selecting instances in active learning that
combines local and global measures. Third, we show that
relabeling, driven by an automatically estimated confidence
score is required to improve the quality of crowdsourced an-
notations. Our experiments using the CMU-MMAC dataset
and Mechanical Turk confirm that the proposed approach
improves active learning in noisy real-world conditions. The
resulting classifiers are close in accuracy to those trained us-
ing ground-truth data.
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