
An Intelligent Load Balancing
Algorithm Towards Efficient Cloud Computing

Yang Xu, Lei Wu, Liying Guo, Zheng Chen
Agent-based Cooperative System Lab

School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu, SC, China, 611731

Lai Yang, Zhongzhi Shi
Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences

Beijing, China, 100190

Abstract

MapReduce provided a novel computing model for com-
plex job decomposition and sub-tasks management to sup-
port cloud computing with large distributed data sets. How-
ever, its performance is significantly influenced by the work-
ing data distributions over those data sets. In this paper, we
put forward a novel model to balance data distribution to im-
prove cloud computing performance in data-intensive appli-
cations, such as distributed data mining. By extending the
classic MapReduce model with an agent-aid layer and ab-
stracting working load requests for data blocks as tokens,
the agents can reason from previously received tokens about
where to send other tokens in order to balance the working
tasks and improve system performance. Our key contribution
lies in building an efficient token routing algorithm in spite
of agents’ unknowing to the global state of data distribution
in cloud. We also built a prototype of our system, and the
experimental results show that our approach can significantly
improve the efficiency of cloud computing.

Keywords: Multi-agent, Load Balancing, MapReduce

Introduction

With the development of distributed systems, cloud com-
puting provides a flexible and scalable approach of manag-
ing thousands of distributed heterogeneous nodes to make
up integrate and high performance computing environment
for users. It has been successfully applied in applications
such as business, scientific research and industries. How-
ever, when the size of cloud scales up, cloud computing is
required to handle massive data accessing requests, such as
distributed data mining. A key challenge on those applica-
tions is that clouds have to keep the same or better perfor-
mance when an outburst of data accessing request occurs,
i.e., In GIS application, an area becomes hot search area
when a disaster takes place, and heterogeneous nodes with
different computing are unbalanced.

Introduced by Google [1], MapReduce provides a
straightforward and efficient framework for processing huge
data sets in cloud computing with flexible job decomposition
and sub-tasks allocation. However, when applied to unbal-
anced cloud, its performance cannot be guaranteed. Unbal-
ance is a key bottleneck for scalable heterogeneous cloud,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while the original balancer in Hadoop is only eye on the
static storage space balance, without considering the work-
ing loads attached to the data blocks. Many researches have
made efforts on load balancing in grid systems, those works
mainly focused on the task queues [6] or job host [7], which
is not important to MapReduce framework. And some fun-
damental architectures no longer exist in MapReduce [9].
The load balancing in MapReduce has also been discussed
by some other researchers. Some of them focused on of-
fline adjustment with learning [2] or predict job progress
[3] [4], but they are not real-time strategies; Some others
tried to optimize single node to improve the whole system’s
efficiency [3] [5], but lack of the inter-nodes scheduling;
Moreover, some others built their own MapReduce-like dis-
tributed computing frameworks, such as [1] and [4], but they
are also unable to handle the dynamic computation changes
in clouds. Due to the lack of real-time monitoring individual
task assignments and data distribution to dynamic adjusting
and rescheduling jobs to efficiently support their computa-
tions, most of previous researches cannot solve the dynamic
computing load balancing problem.

Problem Description

Computation unbalanced problem in MapReduce architec-
ture, which is popular in state of the art cloud computing
can be described as follows:

There are a set of computing nodes A = {a1,a2,a3,. . .}
in the cloud A. Please note, that we only specify balancing
computation problem in this paper. Therefore, only working
nodes are taken into account. ai is the work node, which
is the specific unit for data storage and processing. Sub-
mitted task Task in MapReduce is divided into N parallel
sub-tasks, then choose M (M ≤ N) nodes are chosen to
execute reduce operation for the sub-tasks. MapReduce has
to allocate the task on the nodes who have the computation
data. When the system is unbalanced, a typical case is that
a few nodes hold the most tasks to access the data allocated
on those nodes.

To solve the problem, nodes with computational bottle-
neck are required to copy data to other nodes with bigger
block of free space to share their computational tasks. In the
optimal case, each node holds at most one computation task
and has almost the same size of free storages.

Assuming in Reduce process, sub-tasks are assigned to

27

AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08)

the agents. Each task tsi who requires a computation storage
τi is assigned to an agent aj . We can describe the assignment
process as:

Task → A

Supposed that the free space for each agent aj is fj , the free
space updating function after task allocation is:

fj = fj −
mj∑
i=1

tsi.τi

Where mj is the number of tasks assigned to the agent aj in
Reduce Process. Moreover, the computation cost of agent
aj to perform tasks it hold as is

cj = (1 + kj)
mj−1

kj ∈(0,1) is the parameter which is related the capability
of the node that agent aj represents. The system’s calcula-
tion cost is scaled as C=

∑n
j=1 aj .cj . The goal of balancing

working load is to reduce calculation and free storage vari-
ance and we can define the utility function as

R = argmin
Jactions

(2

√√√√ 1

n

n∑
j=1

(fj − avg)2 +
n∑

j=1

aj .cj + commCost)

(1)
avg = 1

n

∑n
j=1 fj is the average working load across the

system. Therefore, agents are going to search for their joint
activities Jactions to copy data to minimize both free space
distribution variance of working load and computational cost
of each nodes, inaddition to decrease the communication
over network toward their cooperations, which is defined as
commCost.

Agents-Aid Models

In this paper, we introduce MAS system which is suitable
for complex, open and distributed problem solving into the
MapReduce frame, called Agent-aid model. By represent-
ing each node, agents can communicate with each other
to cooperatively manage and adjust the balance of working
loads. Figure 1 illustrates the structure of agent-aid system
in Hadoop, a popular cloud system. Agent-master is mainly
used in centralized task processing such as task allocation,
while in this paper we use completely distributed approach
for adjusting load balancing and only focus the design of the
MAS in agent-worker level. Agent-worker level comprises
of a series of agents, which will monitor the data nodes and
conduct information acquisition. The information includes
node hardware performance and the actual capacity of pro-
cessing task. In addition, agents will monitor nodes’ work-
ing load in real time, and make the decisions on whether load
balancing is necessary in the nodes that they represented. By
cooperating with each other, agents should be able to jointly
make decisions on how to move data blocks to minimize the
utility cost function described in section 2.

Cooperative Agents for Load Balancing

In the process of load balancing, the overload nodes have
to request computing resources from other nodes, and copy

Node 1

TaskTracker

Agent-worker

DataNodeDatabase

Node n

TaskTracker

Agent-worker

DataNodeDatabase

MapReduce Job

Task with
InputFormat

Hadoop core

Master node

MapReduce Framework

HDFS

Name
Node

Job Tracker

Agent-master

Node 2

TaskTracker

Agent-worker

DataNodeDatabase

Data
Node

Feedback of Task Flow

Feedback of Agent Knowledge

Control

Figure 1: The architecture of agent-aid system based on
Hadoop

their data to the new nodes who have more resources. Before
a data migration agreement is reached, agents are required to
interact with others to find who can provide those resources.
In a way which is similar to our token-based coordination
design [8], we abstract agents’ cooperation as tokens. When
an agent starts a token, it claims the request for extra work-
ing load. When an agent gets a token, it either accepts or
passes it. If accept, it will provide the requested working
load. Otherwise, it will transfer the request to other agent
and give up responding the request any more.

Let TOKEN={Δ1,Δ2,Δ3, . . . } represents the set of all
tokens. Each token contains four parts: Δ=< Resource,
Path, Threshold, Lifetime>. Resource identifies the block
size of data for copy. Path records the sequences of agents
that the token visited. Threshold defines the threshold that
an agent is required to accept token. An agent may keep
a request token if its computing resource is greater than
the token’s threshold. Threshold is an important part of
tokens. The threshold of a token is set by its resource re-
quest sender. When the token is being passed and no agent
is able to provide the resource needed, we can induce that
few nodes in the system can satisfy the threshold. In this
case, we make the threshold value decrease gradually until
the token is kept by an agent, on the premise that the thresh-
old value is no less than the size of the requested resource. In
addition, the resource request agent can determine the initial
value of threshold autonomously. The threshold value can
be dynamically change and design a heuristic approach to
assist resource request agent in setting the initial value of
threshold. The principles are as follows:

Based on its observations when the tokens are sent back
and forth or always are not kept by other agents for a long
time, the agent would induct that the system was busy now,
and no large blocks of computing resource existed. Thus, the
agent would decrease the initial value of threshold to make

28

the token more acceptable by other agents. Contrarily, if
the resource request agent found from its past observations
that its past tokens were always easily accepted, the agent
would set a higher threshold value in initiating its tokens, to
improve the acceptation thresholds and make its tokens to
find optimal receivers.

Lifetime defines its time length allowed to exist in the
network. In the transmission process, the lifetime will de-
crease progressively when it passes through an agent. When
an agent receives a token with the end of lifetime, the agent
must terminate the token’s transmission, no matter whether
it can provide the resources the token needed. The goal
of our design is to reduce unnecessary communication cost
brought by excess tokens passing. Furthermore, we may
take the tradeoff between system utility and communication
consumption dynamically according to lifetime.

a5

a7

a6

a8

a9

a11

a10

a12

a1

a3

a2

a4

Cluster 1 Cluster 2

Cluster 3

Figure 2: Agent-worker logical network relying on physical
network paradigm

We build a static logic network as graph G(A,L) for to-
ken movements, where A is the set of the agents and L is
the set of all the edges in graph G. For ∀ai, aj∈ A, (ai,aj)∈
L represents agent ai can exchange token with agent aj di-
rectly, and they are called neighbors. L(a) represents the set
of all the neighbors of agent a where | L(a) |<<| A |. An
example graph of G is shown as figure 2. The advantage
of this design is that agents can gain more tokens from their
neighbors to build their knowledge and infer team states so
that the routing efficiency can be improved. In addition,
from the manifest of small world effect, if tokens can be
passed optimally, it can reach the destination with very few
hops and the overall communication cost for agents’ coordi-
nation is tiny.

Decision Models For Routing Tokens
In this part, we will describe our token routing algorithm.
It is a process that agents attempt to minimize the overall
systems cost by moving tokens around the system. Consid-
ering in a scalable cloud, with the limitation of communica-
tion bottleneck, agents cannot have the knowledge of global
state of the working load distribution with flooded message
sharing. With a partial observation to global state, we mode
agents’ reasoning process as a Partially Observable Markov
Decision Process (POMDP).

The basic decision model of agent a for a token Δ can be
written as a POMDP <S, Actiona, T , Θa, O, R>. S is the

state space and its specific value in time t defined as s(t),
Actiona is the action space of a, T : S× A→ S, is the tran-
sition function that describes the resulting state s(t+1) ∈ S
when executing χ ∈Actiona in s(t). Θa is the observations
of agent a, and Θa = <Tokens(a, t), Ha>. Tokens(a, t)
are all the tokens currently held by a. Ha(t) records all the
incoming and out-going tokens of a before t, andΘa include
not only the tokens the agent currently holds but also all the
previously incoming and out-going tokens (in Ha). The ob-
servation function is defined as O: Θa× S →Ωa. Belief
state Ωa is a discrete probability distribution vector over the
team state s(t) inferred from current local state Θa. R: S→
R defined the instantaneous reward for being in a specific
state where the utility function define in section 4 decreases.
This model can be applied to any agent and any token.

Actiona: S→ (L(a)∪a) is to move Δ to one of L(a)
or keep it for itself. For notation convenience, χ∈Actiona

can be written as move(Δ, b) where b∈(L(a)∪a). Note that
keeping a token for itself applies when the agent need the
resources or able to provide resources. In general, we define
a function Acceptable(a, Δ) to determine whether Δ should
be kept by agent a.

R(s(t)) > 0 when at s(t), a goal of load balancing is
achieved. Team will be credited an instant rewards value
when balance the data.

POMDP model provide a way that agents can reason
and act optimally. However, its computation is NEXP-
COMPLETE. In this paper, other than computing via
POMDP model [10], we provide a heuristic model for token-
based decision. Pa is the decision matrix agent a uses to
decide where to move tokens. Each row Pa[Δ] in Pa repre-
sents a vector that determines the decision where to pass a
token Δ to their neighbors. Specifically, each value Pa[Δ, b]
→ [0, 1], b∈L(a) represents a’s decision that the probability
of passing token Δ to a neighbor b would be the action that
maximize team reward. The key to this distributed reason-
ing lies in how the probability model P for each agent is
updated.

Token-Based Heuristic Algorithm

In this section, we provide a heuristic approach for token
based load balancing. The resulting approach allows fast, ef-
ficient routing decisions, without requiring accurate knowl-
edge of the complete global state. Initially, agents have
no knowledge of their neighbors’ working load distribution,
therefore they have no idea where to forward the tokens. To
assist their decisions, agents build their knowledge base. In
this paper, we build agents’ knowledge base solely from the
tokens previously received. Therefore, no additional com-
munication and observation are required. We defined a sim-
ple estimation vector for each agent a about the thresholds
that its neighbors may be able to accept from agent’ incom-
ing tokens as Ta. Specifically, each element Ta[ai] repre-
sents agent a’s estimation of the threshold that the neighbor
ai or the agents close to ai is able to accept. Intuitively,
the larger the free working load size is, the higher the prob-
ability for the neighbor to accept the token is. Therefore,
we determine the probability of forwarding the tokens to a’s

29

neighbors by agent a’s estimations of their neighbors. Pa is
normalized based on Ta.

We setup the heuristics functions for an agent a to update
Ta with an incoming token Δ:

(1) If an agent gets Δ from its neighbor, the agent may
infer that its neighbor or the part of network close to the
neighbor may not be able to provide the working load be-
yond the threshold requested. Therefore, the agent is less
likely to pass the other tokens with higher thresholds to that
neighbor.

(2) If Δ involves with multiple neighbors, i.e.,
Δ.path =<, b, ..., c > where b, c ∈ L(a), a will ad-
just Ta[b] and Ta[c]. As c is the neighbor who sends Δ, will
be update according to rule (1). But for the case for neighbor
b, we have to setup offset to b as the threshold when b passed
the token is higher.

(3) If Δ is the token who started from a and when Δ is
sent back from the accepted node, agent a will update the
Ta model with the neighbor that Δ was sent to with Δ’s
threshold.

(4) Each agent’s estimation to neighbors’ threshold should
be gradually increased as the time passes by some tasks are
finished, new allocated working data are released.

Algorithm 1 summarizes the reasoning and token rout-
ing decision process for an agent a. The agent firstly re-
ceives all incoming tokens from its neighbors as function
getToken(sender) (line 2). For each incoming token Δ, a
will determine whether it is acceptable with defined func-
tion acceptable (line 4). If it is acceptable, a will send
an acceptNotify to Δ.path[0] which refers to Δ’s sender
(line 5). If a is unable to satisfy Δ’s requirement, it will
countdown Δ.lifetime (line 7). If Δ reaches its lifecycle,
it will be killed and no more passing over the network is al-
lowed. (line 8-9). If a decides to pass Δ, it will add itself
to Δ.path (line 11). Line 12-19 define the important proce-
dures how Ta is updated according to the heuristic rules (1)
to (3) above. After Ta has been updated, we will update the
token passing probability Pa which is to normalize Ta. The
large Ta[ai] is, the greater Pa[ai] is. Before Δ is passed, the
value of Δ.threshold is reduced to fascinate to be accepted
by the other agents except it has been minimized to the re-
source value it requested (line 23-24). Then a will choose
to the neighbor to pass the token to according to Pa[Δ] (line
27-28).

In the following, we will explain the practical function
designs on how Ta is updated. In line 14, as to the neigh-
bor from which Δ was passed cannot satisfy Δ.threshold,
agent a infers that they cannot satisfy the threshold that
the token asks for. Therefore, a has to update the inferred
value of the threshold for the neighbors involved when a
overestimates their values. In the simple case if the neigh-
bor b is the agent who directly passed the token to a and
Ta[b] > Δ.threshold, we update as the mean of Ta[b] and
Δ.threshold. For all the other neighbors that are within
Δ.path, we have to detect Δ.threshold when Δ was trans-
mitted to those neighbors. Since in the transmission pro-
cess, Δ.threshold has reduced by d every time Δ passes
through an agent. In consequence, an offset to estimate the
Δ.threshold has to be considered, which is related to the

Algorithm 1 Decision process for agent a to pass incoming
tokens

1: while true do
2: Tokens(a) ← getToken(sender);
3: for all Δ∈ Tokens(a) do
4: if Acceptable(a, Δ) then
5: acceptNotify(Δ.path[0]);
6: else
7: Δ.lifetime- -;
8: if (Δ.lifetime≤0) then
9: Kill(Δ);

10: else
11: Append(self, Δ.path);
12: for all ai∈(Δ.path∩L(a)) do
13: if (Ta(ai)>Δ.threshold) then
14: UpdateT (Ta[ai],Δ);
15: end if
16: end for
17: if (Δ.path[0]=a) then
18: UpdateNotif (Ta[ai],Δ);
19: end if
20: for all ai ∈ L(a) do
21: UpdateP (Pa[ai],Δ);
22: end for
23: if ((Δ.threshold-d)>Δ.resource) then
24: Δ.threshold -= d;
25: end if
26: neighbor←Choose(Pa[Δ]);
27: Send(neighbor, Δ);
28: end if
29: end if
30: end for
31: Maintain(Ta);
32: end while

numbers of nodes that the token has passed through before
Δ reaches a. We can calculate the value is as follows:

offset = d×(Δ.path.length−findlocation(a,Δ.path))

function findlocation(a,Δ.path) returns the sequence po-
sition of a in Δ.path (starts from 1). For example, re-
turns 4 when agent a is the fourth agent it passed. Please
note that there is a special case that when Δ.threshold
stopped to decreased as it reached Δ.Resource before ar-
rived a. In this case, we only estimate their mean of offset
as o.5× d× (Δ.path.length− findlocation(a,Δ.path)).
In summary the update function UpdateT (Ta[ai],Δ) in line
14 can be uniformly expressed as:

∀ ai ∈ (Δ.path
⋂

L(a)), UpdateT(Ta[aj],Δ)=

⎧⎪⎪⎨
⎪⎪⎩

o.5× (Ta[aj] + Δ.threshold+ offset)

if(Δ.threshold > Δ.resource)

o.5× (Ta[aj] + Δ.threshold+ 1
2offset)

if(Δ.threshold = Δ.resource)

In line 18, when the agent a gets the notification of Δ is
accepted and supposed b is the neighbor that Δ was sent, a

30

will do function UpdateNotif function as:

Ta[b] = (Ta[b] > Δ.Threshold) ?Ta[b] : Δ.Threshold

a will update Ta[b] if Δ reports a higher threshold. More-
over, in our algorithm, agent a’s Ta cannot be always de-
creased as explained in heuristic rule (4). The Maintain
function in line 31 is defined as practical function for each
maintenance period:

Ta = α× Ta where α > 1.

If a node is overloaded, it will generate a token Δ to re-
sort to other nodes for the data migration request. In the
last part of this section, we introduce how agent a initiates
Δ’s threshold to balance on finding the best node and min-
imizing communication cost. Basically the initThreshold
is initiated by the formula:

initThresholda= β
|L(a)|

∑
b∈L(a)Ta[b]

Where β>1 is an influence factor which could be dynam-
ically adjusted and we considering two cases. If agent a’s
previously requests were not notified for a long time, a may
predict that the system is busy and no large free data block
exists. In this case, a will set β less to be easily accepted
by the others. Otherwise, if a frequently gets notification of
requests with big threshold, it may predict that the system
may have enough computation resources. To balance to find
the best node, a will adjust β higher.

0 100 200 300 400 500 600
50

100

150

200

250

300

350

400

450

500

550

t

d

random
auction
token

Figure 3: Token approach made the fast response on allocat-
ing working load requests and balancing computing

Experimental Results

In this section, we established a prototype system to sim-
ulate MapReduce system. This system consisted of 10000
virtual nodes. In our simulation, we abstracted the phys-
ical network of cloud computing and the logical network
for routing tokens is a small world network built based on
100×100 grid. We supposed that all the nodes in the net-
work have the same computational capacity but with differ-
ent initial working loads. When the node’s working load
overweighs its computational capacity, it will initiate a load
adjustment request. In all the three experiments, we set the
randomly initial working loads in the system with the mean
of 500 and each node’s capacity is 1000.

It the first experiment, we investigated the performance
of token-based approach by comparing with centralized ap-
proach and the random approach which passed the work load
directly without using tokens. In token approach, the tokens
that represented the resource requests were passed randomly
to ask if the nodes could satisfy their requirements. It is
notable that we did not apply our heuristic approach of al-
gorithm 1 in choosing the capable nodes, as we set token’s
threshold equivalent to its resource. In centralized condition,
we adopted a simple auction approach to choose the capable
nodes. In this case, each overloaded node is required to ask
for the computational capacities of all the other nodes. Af-
ter a simple auction, the agent will forward its working load
to the most capable one. While in random scheme, the data
block was directly forwarded to a random neighbor regard-
less of its capability. We firstly chose an outlet node to send
3000 working data requests with 300 per time and ten times.
At each time, the other batch will be generated after the last
batch of tokens was accepted. We premised the communi-
cation bottleneck was 1000 per tick, and the communication
traffic generated by token or message for each transmission
was 1. The traffic for transmitting a data block was 10000.
Therefore, if beyond its communication bottleneck, a node
had to process the data in the next interval which would de-
lay the system responding time. In this experiment, we in-
vestigated the variance of the unbalanced computing nodes
and the elapsed time when each batch of tokens were ac-
cepted. As shown in figure 3, our token-based approach
works best with the best responding time for both token ac-
ceptance and balancing the network.

(a) (b)

Figure 4: Tokens’ average communication costs over the
network in the token approach and random approach with
different system sizes

In the second experiment, we compared the efficiency
for tokens’ finding the destination nodes using heuristic ap-
proach and random approach. In our heuristic approach, we
adopted the algorithm described in algorithm 1. In the ran-
dom token passing, agents did not build any knowledge but
tokens were forwarded in a random way. Similar to experi-
ment 1, the outlet node would send 30 batches of tokens with
100 tokens for each time. At each time, the other batch will
be generated after the last batch of tokens were accepted.
In figure 4, we investigated the average communication cost
(one message per move) after each batch of tokens were ac-

31

cepted. In tuition, the early batches of tokens are easily ac-
cepted by agents around the outlet agents, therefore, their
average communication costs are small. But with more to-
kens come out, they have to travel further to find capable
agents. The results in random token passing matched our hy-
pothesis. But our heuristic algorithm took the benefit from
previously received tokens and could find the capable agents
faster in trading with the longer distances to them. There-
fore, the average communication cost almost stayed in the
same level after 5 batches. Figure 4.a and 4.b showed the
same conclusions with different numbers of nodes (10000
nodes in 4.a and 15000 nodes in 4.b)

(b)(a)

(c) (d)

Figure 5: The token distributions over a grid network with
different ways of initialling thresholds

In our third experiment, we examined the validation of dy-
namically adjusting tokens’ initial threshold to balance the
working data over the network. Unlike the previous simula-
tions, the nodes were organized as 100× 100 grid network.
The outlet node was in the center of the network and sent
1200 tokens at once. Each node was set to be able to accept
only one token. In this experiment, we have made three set-
tings. (1) Tokens with very low initial threshold; (2) Tokens
with very high initial threshold; (3) Tokens with random ini-
tial threshold. We hypothesized that by dynamically setting
tokens’ initial threshold, agents can be more efficient to bal-
ance the system. When an agent accepted a token, it was
marked as a blue dote in figure 5. The results matched our
expectation. In 5.a, when the tokens’ initial thresholds were
uniformly low, tokens were accepted very close to the outlet
agent and their distribution was not balanced. In 4.b, when
the tokens’ initial thresholds were uniformly high, tokens
were all pushed far away from the outlet agent and their dis-
tribution was not balanced as well. In 4.c and 4.d, when the
tokens’ initial thresholds were randomly set, tokens’ distri-
bution was evenly scattered and were balanced.

Conclusion and Future Work
In this paper, we proposed an agent-aid model by combin-
ing multi-agent system and decision-making theory toward
working load balancing problem in large clouds. By ab-
stracting agents’ cooperations to locate the requests of work-

ing loads as tokens, we have built a heuristic approach to
find optimal providers with agents’ partial observations to
global working load distributions. Our simulation results
showed that agents can intelligently pass tokens to maximize
the team efficiency with limited communication costs.

As the initial steps toward agent-based scalable clouding,
we have a lot of challenges and questions to solve. Firstly,
we believe that if our design of logical network matches the
characters of physical distributions of clouds, the efficiency
could be greatly improved. Finding a suitable logical net-
work will be a nice research in the future. Secondly, im-
porting more heuristic rules will make our model more in-
telligent. At last, building a real system other than abstract
simulations to prove the efficiency of our approach is the
most important work for us to do next.

Acknowledgement
Our work is supported by Key Projects of National Science
Foundation of China (No. 61035003, 60933004, 60905042)
and National Basic Research Priorities Programme (No.
2007CB311004).

Reference
1 J. Dean, S. Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In Symposium on Operating
System Design and Implementation, 2004.

2 R. Bryant. Data-intensive super computing: The case for
DISC. In Technical Report CMU-CS-07-128, Carnegie
Mellon University, 2007.

3 M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica.
Improving MapReduce performance in heterogeneous en-
vironments. In 8th USENIX Symposium on Operation
Systems Design and Implementation, 2008.

4 J. Al-Jaroodi, N. Mohamed, H. Jiang, D. Swanson. Mid-
dleware infrastructure for parallel and distributed pro-
gramming models in heterogeneous systems. In IEEE
Transactions on Parallel and Distributed Systems, 2003.

5 M. Zaharia, D. Borthakur, J. Sarma. Job scheduling
for multi-user mapreduce clusters. In Technical Report
UCB/EECS-2009-55, Electrical Engineering and Com-
puter Sciences University of California at Berkeley, 2009.

6 N. Nehra, R. Patel. Distributed parallel resource co-
allocation with load balancing in grid computing. Journal
of Computer Science and Network Security, 2007.

7 V. Kun-Ming, V. Yu, C. Chou, Y. Wang. Fuzzy-based dy-
namic load-balancing algorithm. Journal of Information,
Technology and Society. 2004.

8 Y. Xu, P. Scerri, K. Sycara, M. Lewis. An integrated
token-based algorithm for scalable coordination, Au-
tonomous Agents and Multiagent Systems. 2005.

9 S. Chau, A. Wai, C. Fu. Load balancing between comput-
ing clusters. 4th Conference on Parallel and Distributed
Computing Applications and Technologies, 2003.

10 A. Cassandra, M. Littman, N. Zhang. Incremental prun-
ing: a simple, fast, exact method for partially observable
Markov decision processes. In Scientific American, 2003.

32

