
Cloud Resource Management
Using Constraints Acquisition and Planning

Yannick Le Nir and Florent Devin and Peio Loubière
26 avenue des Lilas 64062 Pau Cedex 9

Abstract

In this paper we present a full architecture to deploy effi-
ciently a grid in a private cloud approach. We first give de-
tails about the resources constraints acquisition. We use Rich
Internet Application (RIA) to access and/or modify the re-
sources in a very user-friendly interface. Then, using the
previous information, we explain how we can compute a dy-
namic deployment plan, that can be used either to build an op-
timal grid of computers or to give information to its scheduler.
This plan is computed using pddl solver with various logical
constraints obtained from the IT users through the RIA.

Introduction
Nowadays, the historic term grid computing is being chan-
ged into the marketing term cloud computing. Behind this
terminological variation, there is a real evolution that im-
pacts a lot of uses. Whereas grid computing often has spe-
cific middle ware, in cloud computing it is now very use-
ful to work with scalability and heterogeneous software and
hardware. Thanks to the simple way to deploy application
in the cloud, we should completely reconsider the resources
management. Researchers or other users no longer have to
consider initial challenges such as the way to run a job, or
to transfer files, nor the management of many users on many
systems. They can concentrate on the most important task
being the description of their problem in an efficient lan-
guage which must be very simple, powerful and without any
learning curve. The integration of this process in an existing
IT is essential to reduce the data redundancy and to maintain
consistent information. While cloud computing is becoming
almost commonplace, an essential challenge is then the re-
sources management both from users and data-centers. In
this paper, we first present a simple architecture built as a
SOA to resolve the resource management problem. This ar-
chitecture is divided into two services. The first one is a spe-
cific controller dedicated to solving the management task.
The second service is a rich web interface plugged into the
existing IT. Both offer a powerful solution to the dynamic
resource management problem for many cloud computing
architecture deployments.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cloud resource management
Grid computing
During the 1990s, many projects started using the term grid
for distributed computing architecture. Initially a major goal
was to enable resources sharing for scientific collaborations.
In (?), they argue that the use of such architectures is relevant
when a common set of requirements for resource sharing
and problem solving in dynamic, multi-institutional collab-
orations exists. Due to their distributed and often ephemeral
nature, the term virtual organization is sometimes used. Be-
hind this term, we found various applications that today
form the basis of most famous cloud based applications.

From grid to cloud
In this case, what are the main differences between the his-
toric term grid computing and the fashionable one cloud
computing (?),(?)? Many people argue that there is no fun-
damental difference, and consider it is just a terminologi-
cal evolution. In (?), it is said that This is not a technology
game but a change-management game. However, we can
find some other important evolutions, that we will consider
in our work:

• the present cloud computing is deployed in nets where
transmissions are more efficient between computers (?).

• the progress of virtualizations, due to the increased power
of computers, now offers a real solution for every applica-
tion deployment in distributed architectures whatever the
heterogeneity of software (?).

• the necessity to reconsider controls and resource manage-
ment in a more flexible way. Indeed, as a consequence
of the two previous points, we can now consider a cloud
computing that can be easily accessed by anyone who has
no technical background (?).

Before giving details about cloud management specificities,
we have to finish the context description of our work includ-
ing an important difference between the so called public and
private cloud (?). It is a highly debated question to decide if
a cloud based on private infra-structures has a sense. Most
of the time, a private cloud is deployed in a unique existing
IT that is in charge of rights and resources management. Pri-
vate cloud can be seen as simulation of cloud computing on

15

AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08)

private networks. The ability to scale up or down depend-
ing on demand for such networks is a similar challenge as in
classic public cloud (?). In a company, there is often a set of
computers available. In this case, the objections related to
the equipement cost are not relevant since companies need
their own computers.

Later in this paper, we will concentrate on such private
cloud. Indeed, we will use the fact that we know the com-
plete architecture of the IT to generate deployment plans that
match the real management of resources optimally.

Cloud management specificities
Within the previous description of a private cloud, we can
expose the management specificities that we will consider
in our deployment plan. To deploy computers on the grid
which will build the private cloud we have a multicriteria
approach. This is the first specificity.

The different criteria we take into account mix the con-
flicting goals to maximize the amount of available resources
and to minimize the energy consumption. Such a problem-
atic is common in classic cloud (?) and can be improved
in our model. The second specificity is the dynamic behav-
ior of resources since the elements of the grid are usual and
non specific computers. The third and last specificity is the
separation of constraints in two distinct classes, called hard
and soft constraints. These constraints give indications to
the planning without blocking the deployment phase.

Problem modeling
The main goal of our application is to build a deployment
plan for all existing resources that can be integrated into
the grid. Thus we have to collect information describing
the availabilities of these resources and the needed amount
of computing time queried by users during a fixed period.
These two parts are essential and often not efficiently inte-
grated in classic architecture. The choice we made to con-
sider only private cloud is here a real advantage. Indeed, we
can reuse the existing IT to collect already known informa-
tion about the state of the resources that could be integrated
into the grid. This resource constraints acquisition is done
using a Rich Internet Application that communicates with
the IT and gives facilities for users to interact with the private
cloud. Once we have collected all the needed information,
we can translate it into logical constraints that will be used
by a solver to build a deployment plan related to time-line.
This plan can be used to build a dynamic and efficient grid
that really meets the requirement of the users. This compu-
tational part is done using the famous description language
pddl and classic efficient solvers such as FF.

Resource constraints acquisition
In public cloud, you do not have to deal with availability. It
offers a service and you “just” have to pay to use this ser-
vice. Regardless of whether there are enough computers to
satisfy your demand on time t, you simply want to have a
huge computing capacity. But in a private cloud, you do not
have to pay (you have already done it, by buying computers).

You can not simply ask the system to have enough proces-
sors to meet your needs. You have to consider many aspects.
Some of these are functional (what kind of computer you
have), others are more preferences (like green computing),
and others are structural (computer might be under mainte-
nance).

If the first two categories can be handled by the system de-
ploying the grid, as we have seen previously, the latter have
to be done before running the cloud manager. In fact, struc-
tural availabilities have to be considered as an entry for the
cloud management process. For now, we have considered
three different kinds of structural availabilities:

• computer unavailability: means that the usual user is
working on it;

• computer maintenance: means that the system adminis-
trator has to do some work on the computer;

• computer unreachable: means that the room in which the
computer is located is under maintenance.

Once you have a tool to facilitate the “constraints acquisi-
tion”, you can easily transform them into time slots con-
straints entry.

Application
Although our model can be used in every company that
wants to retrieve unused computing time, it is very well
adapted for a university or engineering school that owns a
lot of computers with very flexible use. We will take for ex-
ample our engineering school for which we have designed
a new software to automatically generate timetables : Stra-
tus (?; ?). This tool deals with several constraints. Dealing
with all these constraints implies that the timetable could
often change. With this software, we are able to extract un-
availability of each computer science room. But this is not
sufficient to have an efficient tool to deploy a private grid.
As we schedule classes into classrooms, we are also able to
know how many computers are used. So for each time of
each day we are able to find out exactly the number of free
computers in each room.

As we are in a school, we have to provide a tool to inform
all users that a particular room is unavailable. The adminis-
tration, in charge of dealing with these events, can put a hard
constraint on the necessary room, to prevent Stratus gener-
ating a flimsy timetable. Putting a hard constraint on Stratus
is very easy, and it can be done in two ways:

• Using a particular Google calendar and scheduling a room
reservation, like anybody would schedule an appointment
on his own Google calendar.

• Using Stratus and mark a reservation for the room. In
Stratus this can be done using a visual interface (like
Google calendar), or by using a specific textual interface.

As a computer scienc eengineering school, we have to
provide up-to-date computers (for those who do not use lap-
tops). Providing up-to-date computers involves various tests
(configurations, software testings, scalable test, . . .). So the
system administrators can use several computers. So we

16

have to provide a particular way to handle this. Usually sys-
tem administrator are people that often prefer textual inter-
faces rather than graphical ones. With this in mind, we have
developed a specific web service to allow the administrator
to use a textual interface. He can use this web service to
make a reservation, or send a mail (which is closer to a form
than a mail) to a specific user. Sending this mail will be au-
tomatically translated as a call to the web service. He can
also use the same facilities as previously mentioned. But
as he can use only part of a room, there is a particular field
to indicate how many computers of a room (a number, or a
percentage) he needs.

Figure ?? shows how the system handles all kinds of con-
straints to provide a complete description of the use of all
computers.

Figure 1: Constraints acquisition - export

Deployment planning
Once we have collected the resources and users’constraints
for a fixed time period, we can compute a deployment plan.
In this part, we explain the process of computer allocation to
the grid during several time slots under constraints.

Constraints
If we consider our particular case, we have several computer
rooms that are used by students during several time slots per
week. We spend a lot of time with many computers on but

with no particular use.
To optimize the use of these computers, we want to con-
struct, in a dynamic way, a grid according to their availabil-
ity, the electric consumption, etc. in order to execute jobs
in a private cloud architecture. It is a fixed slot problem, a
week is divided into many equal time slots, the duration of
a single time slot is a parameter. We also consider that we
rent computing time for jobs to be executed in our cloud;
this time is expressed in numbers of time slots.
To manage this problem, we must consider the following
items : computers to include in the grid, unavailable time
slots, the jobs to be planned in the grid and the number of
time slots needed for each job.
Resolving this problem means associating a job’s slot with a
computer at an available slot. This problem leads us to con-
sider some constraints that the planning process must vali-
date. We separate them into two categories : hard and soft
constraints. Hard constraints are constraints we must satisfy
without exception, soft constraints are constraints we want
to respect as far as possible but which might not be satisfied
The hard constraints are :
• a computer must be added to the grid if a job needs it;
• a computer can be added to the grid at a certain time slot

if it is available during this time slot.
The soft constraints are :
• to optimize the cost of running many computers, a maxi-

mum number of jobs should be running during night slots
(night preferred);

• the job execution must not be spread throughout the week;
as far as possible, we must plan jobs in following available
slots (following slots);

• we can also define one job’s priority for those which are
urgent and are therefore the first planned (job priority);

• we can estimate a night and day number of computers
available to control electricity consumption (from com-
puters or cooler system, for example) (max computers);

• we can also determine if a job needs a minimum comput-
ing capacity, to select only the computers which fit (min
capacity).

Planning description using PDDL
This problem is a typical scheduling problem as defined
in (?) : ”exact allocation of activities to resources (...)
over time respecting precedence, duration, capacity and
incompatibility constraints”. In our model, the objects
are quite simple and the constraints are limited, thus, we
choose PDDL as planning definition language to describe
our problem.
First we must define the objects involved in the scheduling :
a job, on a computer at a time slot.

Then we defined predicates and a function to satisfy hard
constraints:
• (exec ?j ?slot) which specifies if a job is already

being processed in the grid at a certain time slot (no job
parallelization yet);

17

• (add-grid ?comp ?slot) which specifies that a
computer is added to the grid at a certain time slot;

• numeric function (needed-slot ?job) to evaluate
how many slots are dedicated to a job (slots are distinct).

We must also satisfy the defined soft constraints:
• night preferred :

j ∈ job, ∃s ∈ timeslot, available(s) ∧ is− night(s)

• following slots :
s0 ∈ timeslot, avail(s0),
∀s ∈ timeslot, avail(s) ∧ s0 ≤ s

• max computers :
s0 ∈ timeslot, max− computers(s0) > 0

• job priority :
j0 ∈ job, neededslot(j0) > 0, ∀j ∈ job, j �= j0 ∧
neededslot(j) > 0 ∧ priority(j0) ≤ priority(j)

• min capacity :
j0 ∈ job, ∃c ∈ computer,
mincapacity(j0) ≤ capacity(c)

To implement them, we used numeric functions (such
as (min-capacity ?job), (job-priority ?job) or (slot-weight
?slot), to include a precedence of time slots), predicates (like
(is-night ?slot), (used ?comp)) and existential preconditions
to manage difference between night and day slots, priority,
consecutiveness etc.

Solver
Using PDDL description, we could improve several avail-
able solvers from past planning competitions. Considering
our PDDL description, the language version being 2.1 (by
the use of fluent functions) as defined in (?), our choice re-
duced the numbers of available solvers. First we chose lpg
(?) and lpg-td (?) solvers because we had metrics to opti-
mize and we left soft constraints management to the metric
optimization. However we gave up because we had many
optimizations and we didn’t find the right criteria, and above
all, the results were optimized but they depended from the
starting seed, and it was not as good as we expected in all
cases. So we chose Metric-FF (?), which does not provide
metric optimization, but whose solution is much more pre-
cise, considering the fact that we have expressed all soft con-
straints in PDDL functions and predicates.

Results
To illustrate the work on the solver, here are excerpts from
our PDDL domain and problem files and the computed solu-
tion. The domain file (Figure ??) is composed of : numeric
values (lines 5-9), predicates (lines 12-14) which describe
hard and soft constraints. Then the main action function to
be excecuted : plan (line 16). This function must verify all
preconditions (lines 19-26) (still computer available for cur-
rent slot, current computer not used, with enough capacity
for current job and there is no other job with higher priority
yet to plan), and the effects of post-conditions (effects, lines
27-30, add the computer to the grid at current slot, check
the job is in execution at current slot (no parallelization) and
decrease the number of slots to plan for this job, and the

�
1 (d e f i n e (domain g r i d−domain)
2 . . .
3 (: t y p e s t i m e s l o t compute r j o b)
4 (: f u n c t i o n s
5 (s l o t−w e i g h t ? c − t i m e s l o t)
6 (max−compu te r s ? c − t i m e s l o t)
7 (comp−c a p a c i t y ?m− compute r)
8 (job−p r i o r i t y ? j − j o b)
9 (needed−s l o t ? j − j o b)

10 . . .)
11 (: p r e d i c a t e s
12 (add−g r i d ?m− compute r ? c − t i m e s l o t)
13 (i s−n i g h t ? c − t i m e s l o t)
14 (exec ? j − j o b ? c − t i m e s l o t)
15 . . .)
16 (: a c t i o n p l a n
17 : p a r a m e t e r s (? j − j o b ? c − t i m e s l o t ?m− compute r)
18 : p r e c o n d i t i o n (and
19 (> (max−compu te r s ? c) 0)
20 (n o t (add−g r i d ?m ? c)) . . .
21 (≥ (comp−c a p a c i t y ?m) (min−c a p a c i t y ? j))
22 . . .
23 (n o t (e x i s t s (? j b − j o b)
24 (and (< (job−p r i o r i t y ? j) (job−p r i o r i t y ? j b))
25 (> (needed−s l o t ? j b) 0))))
26 . . .)
27 : e f f e c t (and
28 (add−g r i d ?m ? c) (exec ? j ? c)
29 (d e c r e a s e (max−compu te r s ? c) 1)
30 (d e c r e a s e (needed−s l o t ? j) 1))
31))
�� �

Figure 2: PDDL domain file

number of computers composing the grid at this slot).
The PDDL problem file (Figure ??) lists all the objects in-
volved, the facts they verify, the initialization of numeric
values and the goal to achieve. In our example, our problem
is defined by :
• 18 slots available (line 4; in 27 possible, a slot is 6h long,

1st one, (ts0) is Monday 0 to 6h, then it follows), with
hierarchy (line 9), night slots defined (line 12) and maxi-
mum 3 computers authorized per slot (line 13)

• 70 computers (but 3 used at the same time), with capacity
defined (lines 14-15), 4 or 8Ghz, for example)

• 12 jobs to plan, each one has a number of slots (line 10), a
priority (no 7, 9 and 1 are the 3 most urgent jobs to plan),
and a minimum computing capacity (lines 15-16, 8Ghz
for all)

• the goal (lines 18-19) is for each job to have all its slots
planned
A solution found by Metric-FF (Figure ??), we can see

that the priority is respected, the earlier night slot is given to
the first job, then the next slot, etc. The maximum computers
per slot is also respected and the capacity too (computer 67
and 66 are not used)

Conclusion
In this work, we have proposed a complete architecture to
extract availabilities from a set of computers in an existing
IT and to compute a deployment plan for the grid in a pri-
vate cloud approach. This plan (Figure ??) associates com-
puters to time slots and will be used to dynamically add or
retract computers from the grid. This plan can now be used
by many grid tools such as Gridgain or Diet. The integration
is easy since it only needs to integrate the acquisition part

18

�
1 (d e f i n e (problem g r i d−pb)
2 (: domain g r i d−domaine)
3 (: o b j e c t s
4 t s 2 7 . . . t s 8 t s 7 t s 4 t s 3 t s 0 − t i m e s l o t
5 comp0 . . . cmp68 cmp69 − compute r
6 job0 . . . j ob11 − j o b
7)
8 (: i n i t
9 (= (s l o t−w e i g h t t s 0) 0) . . .

10 (= (needed−s l o t j ob1) 3) . . . (= (needed−s l o t j ob7) 2) (= (needed
−s l o t j ob 9) 3)

11 (= (job−p r i o r i t y job1) 100) (= (job−p r i o r i t y job7) 200) (= (job−
p r i o r i t y j ob 9) 150)

12 (i s−n i g h t t s 0) (i s−n i g h t t s 4) (i s−n i g h t t s 8) . . .
13 (= (max−compu te r s t s 0) 3) (= (max−compu te r s t s 3) 3) . . .
14 . . . (= (comp−c a p a c i t y cmp65) 8) (= (comp−c a p a c i t y cmp66) 4)
15 (= (comp−c a p a c i t y cmp67) 4) (= (comp−c a p a c i t y cmp68) 8)
16 (= (min−c a p a c i t y j ob0) 8) . . .
17)
18 (: g o a l
19 (and (= (needed−s l o t j ob0) 0) . . . (= (needed−s l o t job11) 0))
20))
�� �

Figure 3: PDDL problem file

�
1 0 : PLAN JOB7 TS0 CMP69
2 1 : PLAN JOB7 TS3 CMP69
3 2 : PLAN JOB9 TS0 CMP68
4 3 : PLAN JOB9 TS3 CMP68
5 4 : PLAN JOB9 TS4 CMP69
6 5 : PLAN JOB1 TS0 CMP65
7 6 : PLAN JOB1 TS3 CMP65
8 7 : PLAN JOB1 TS4 CMP68
9 8 : PLAN JOB3 TS4 CMP65

10 9 : PLAN JOB3 TS7 CMP69
11 1 0 : PLAN JOB5 TS7 CMP68
12 1 1 : PLAN JOB5 TS8 CMP69
13 1 2 : PLAN JOB5 TS11 CMP69
14 1 3 : PLAN JOB5 TS12 CMP69
15 1 4 : PLAN JOB5 TS15 CMP69
16 1 5 : PLAN JOB5 TS16 CMP69
17 1 6 : PLAN JOB5 TS19 CMP69
18 1 7 : PLAN JOB2 TS7 CMP65
19 1 8 : PLAN JOB2 TS8 CMP68
20 1 9 : PLAN JOB2 TS11 CMP68
21 2 0 : PLAN JOB2 TS12 CMP68
22 2 1 : PLAN JOB2 TS15 CMP68
23 2 2 : PLAN JOB2 TS16 CMP68
24 2 3 : PLAN JOB2 TS19 CMP68
25 2 4 : PLAN JOB2 TS20 CMP69
26 2 5 : PLAN JOB8 TS8 CMP65
27 2 6 : PLAN JOB8 TS11 CMP65
28 2 7 : PLAN JOB8 TS12 CMP65
29 2 8 : PLAN JOB11 TS15 CMP65
30 2 9 : PLAN JOB11 TS16 CMP65
31 3 0 : PLAN JOB10 TS19 CMP65
32 3 1 : PLAN JOB6 TS20 CMP68
33 3 2 : PLAN JOB6 TS21 CMP69
34 3 3 : PLAN JOB6 TS22 CMP69
35 3 4 : PLAN JOB6 TS23 CMP69
36 3 5 : PLAN JOB6 TS24 CMP69
37 3 6 : PLAN JOB4 TS20 CMP65
38 3 7 : PLAN JOB0 TS21 CMP68
39 3 8 : PLAN JOB0 TS22 CMP68
40 3 9 : PLAN JOB0 TS23 CMP68
41 4 0 : PLAN JOB0 TS24 CMP68
42 4 1 : PLAN JOB0 TS25 CMP69
43
44 t ime s p e n t : 1 . 0 9 s e c o n d s i n s t a n t i a t i n g 0 easy , 61200 ha rd

a c t i o n t e m p l a t e s
45 0 . 0 5 s e c o n d s r e a c h a b i l i t y a n a l y s i s , y i e l d i n g 2916

f a c t s and 61200 a c t i o n s
46 0 . 2 5 s e c o n d s c r e a t i n g f i n a l r e p r e s e n t a t i o n wi th

2880 r e l e v a n t f a c t s , 47 r e l e v a n t f l u e n t s
47 1 . 5 4 s e c o n d s comput ing LNF
48 1 . 9 9 s e c o n d s b u i l d i n g c o n n e c t i v i t y g raph
49 9 . 6 2 s e c o n d s s e a r c h i n g , e v a l u a t i n g 43 s t a t e s , t o a

max d e p t h o f 1
50 1 4 . 5 4 s e c o n d s t o t a l t i m e
�� �

Figure 4: Solution file

in an existing IT and to transfer the planning part results as
entries of the grid manager.

References
Bartak, R., and Rudova, H. 2001. Integrated modelling
for planning, scheduling, and timetabling problems. In In
Proceedings of the 20 th Workshop of the UK Planning and
Scheduling SIG.
Creeger, M. 2009. Cto roundtable: Cloud computing. Queue
7:1:1–1:2.
Devin, F., and Le Nir, Y. 2010a. On-line timetabling soft-
ware. In Proceedings of the 8th International Conference for
the Practice and Theory of Automated Timetabling (PATAT-
10).
Devin, F., and Le Nir, Y. 2010b. Timetabling ria in action.
In Demo session of the 20th International Conference on
Automated Planning & Scheduling (ICAPS-10).
Distefano, S.; Cunsolo, V. D.; Puliafito, A.; and Scarpa, M.
2010. Cloud@home: A new enhanced computing paradigm.
In Furht, B., and Escalante, A., eds., Handbook of Cloud
Computing. Springer US. 575–594.
Foster, I., and Kesselman, C. 2004. The grid in a nutshell. In
Nabrzyski, J.; Schopf, J. M.; and Weglarz, J., eds., Grid re-
source management. Norwell, MA, USA: Kluwer Academic
Publishers. 3–13.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20:2003.
Frncu, M. E. 2010. Scheduling service oriented workflows
inside clouds using an adaptive agent based approach. In
Furht, B., and Escalante, A., eds., Handbook of Cloud Com-
puting. Springer US. 159–182.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Planning in pddl2.2 domains with lpg-td. Working Notes of
the 14th International Conference on Automated Planning
& Scheduling (ICAPS-04).
Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning with
numerical expressions in LPG. In Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI-04),
667–671.
Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numerical state variables.
Journal of artificial intelligence research. special issue on
the 3rd international planning competition 20.
Jin, H.; Ibrahim, S.; Bell, T.; Gao, W.; Huang, D.; and Wu,
S. 2010. Cloud types and services. In Furht, B., and Es-
calante, A., eds., Handbook of Cloud Computing. Springer
US. 335–355.
Lin, G., and Devine, M. 2010. The role of networks in cloud
computing. In Furht, B., and Escalante, A., eds., Handbook
of Cloud Computing. Springer US. 65–82.
Ragusa, C.; Longo, F.; and Puliafito, A. 2009. Expe-
riencing with the cloud over glite. In Proceedings of the
2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, CLOUD ’09, 53–60. Washington, DC,
USA: IEEE Computer Society.

19

Villegas, D.; Rodero, I.; Fong, L.; Bobroff, N.; Liu, Y.;
Parashar, M.; and Sadjadi, S. M. 2010. The role of grid
computing technologies in cloud computing. In Furht, B.,
and Escalante, A., eds., Handbook of Cloud Computing.
Springer US. 183–218.
Zhang, Y.; Huang, G.; Liu, X.; and Mei, H. 2010. Inte-
grating resource consumption and allocation for infrastruc-
ture resources on-demand. In Proceedings of the 2010 IEEE
3rd International Conference on Cloud Computing, CLOUD
’10, 75–82. Washington, DC, USA: IEEE Computer Soci-
ety.
Zhu, J. 2010. Cloud computing technologies and applica-
tions. In Furht, B., and Escalante, A., eds., Handbook of
Cloud Computing. Springer US. 21–45.

20

