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Abstract 
Communication bad spots on a commuter’s train journey 
provide an example of context for the activities of a work 
system (user and devices) attempting to transfer large vol-
umes of data.  A simplified set theoretic based approach il-
lustrates how the activities, their context, and device context 
capture can start to be analyzed.  It is argued that context is 
not significantly harder to model than other, human aspects 
in a general systems analysis. 

 Introduction 

This paper is the second of a pair prepared for the 2011 
AAAI Activity Context Representation Workshop.  The 
first paper, ‘Defining and Representing Activity Context 
for Systems Analysis’, summarizes the author’s formal 
Simplified Set Theory (SST) approach and the use of his 
PentaVenn diagram.  This second paper uses these in a 
modest, partially worked example to explore the contexts 
of an activity and how a formal approach can aid systems 
analysts by providing structured guidance. 

The Train Connectivity Scenario 

The scenario is that a user with one or more digital devices, 
in England, are on their regular commuter train.  At several 
locations on the train journey, external network connec-
tions are poor or absent, perhaps because of tun-
nels/cuttings or the absence of cell phone masts. Being a 
regular commuter, the user has captured, i.e. learned from 
experience, the train route’s environmental context, that 
there are predictable spots where external communication 
is often difficult or is impossible.  Knowing this, the user 
adjusts what they do to work around these spots.  In par-
ticular, the user avoids starting their frequent, large file ex-
ternal transfers when the train is approaching a communi-
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cation bad spot.  Concerning solutions, it is assumed there 
are too many remote sites using too many different plat-
forms for it to be feasible to globally change systems soft-
ware to allow interrupted data transfers to recommence. 

The Unassisted User  Scenario 
Starting with the above scenario, first the user has to iden-
tify their problem, that too often they attempt long data 
transfers (e.g. 5-20 minutes) to a remote site that fail due to 
connectivity bad spots on their commuter train route.  The 
user already knows when, if the train is on time, the bad 
spots will occur. Britain’s trains are not noted for their 
punctuality and they are deemed on-time within a window 
of ten or so minutes, so just using the train timetable to 
predict bad spots is not feasible. Over a number of jour-
neys, the user attempts to find journey landmarks that pre-
cede the bad spots by a few minutes (“a few” being less 
than the predicted time for file transfer).  Some landmarks 
might be easy to identify, e.g. just after a station stop, 
whereas others may be just glimpsed through the window.  
Ideally, landmarks need to persist as, if the user is working, 
then they won’t be looking out of the window, and even an 
easily identified landmark might be passed in seconds.  
Such persistence is rare, so what the user will do is choose 
a series of visual landmarks that precede a bad spot so that 
they come to recognize the area when they look out of the 
window before they perform a major remote site access. 
 Being human, most of the user’s activity is perceptual 
and cognitive, learning then recognizing from memory 
where the train is relative to communication bad spots and 
estimating how long before these are likely to be reached.  
The user might compile a short list as an aide memoire or, 
being computer literate, they produce a map of their route 
and mark the bad spots and their approaches (Figure 1). 
 In Figure 1, the width of the bars represents the duration 
of the journey that will be affected by communication bad 
spots (black) and their approaches (grey), e.g. bad spots b 
and c have broader approach areas to represent that trains 
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are usually going faster here.  As a memory aid, the users’ 
hard copy map could be credit card sized, but, if its main 
purpose relates to using a laptop, then the map can be dis-
played on screen, which the user might do in a small win-
dow when the laptop is started on the train. 

Figure 1. User’s communication black spot map showing four 
spots (a-d) in black and their approach areas in  grey. 

 This is as far as one user might go, but the project is to 
develop an application to support users’ remote file han-
dling and to remove the considerable cognitive effort that a 
user would have to make investigating and developing the 
map, and ameliorating the still considerable cognitive load 
associated with its use.  Unassisted users will makes errors, 
because they are busy working, so might forget the context 
completely or forget to look out of the window in time, or 
they may fail to recognize where they are as one landscape 
may look much like another in poor visibility conditions, 
e.g. heavy rain, fog, or dirty windows in low sunlight, and, 
of course, at night. 

Systems Analysis 

General systems analysis is different from many other ap-
proaches in HCI and software engineering because of its 
emphasis on the context in which activities occur.  The 
contrast might be between a user-computer dialogue model 
and the more general systems model of an activity.  In the 
latter, using the PentaVenn diagram and SST (Figure 2), 
the work system set A={WS} consists of a user and their 
digital devices (e.g. laptop, ‘phone, PDA).  The Applica-
tion Domain set B={AD} is the remote site and there are 
two interface sets, C={Input}, from the WS to AD, and 
D={Output}, vice versa.  The fifth set is E={Context}. 
 An obvious first step is to consider normal communica-
tion between WS and AD.  Analysts need to understand 
and define each intersection and the communicative rela-
tionships (paths) through the diagram, e.g. sending an 
email to a remote site, a five intersection path is: 
(1) = WS\* 
‘The user and device compose an email.’ ∈ (1) 
(7) = {WS∩∩∩∩Input}\* 

‘The user’s device sends an email.’ ∈ (7) 
(3) = Input\* 
‘External network transmits email packets.’ ∈ (3) 
(10) = {AD∩∩∩∩Input}\* 
‘The AD computer receives an email.’ ∈ (10) 
(2) = AD\* 
‘The AD computer and user displays/reads email.’ ∈ (2) 
 In the other direction the path is: 
(2)→(11)→(4)→(8)→(1).  This is for one-way communi-
cation and there are two other paths for the simultaneous 
case, e.g. a mobile ‘phone call, where (13), {In-
put∩Output}\*, replaces the middle intersections, either 
(3) or (4).  Already nine of the upper fifteen intersections 
have been populated, if not yet done well. 

Figure 2. PentaVenn diagram of 5 sets (A-E) and with the 31 in-
tersection areas numbered. 

 An easy way to populate the remaining six areas is to in-
terpret them initially with respect to people’s knowl-
edge/beliefs of the data transmission activity: 
(26) = {WS∩∩∩∩AD∩∩∩∩Input∩∩∩∩Output}\* 
‘The knowledge/beliefs the WS and AD users share of how 
their communication channels work.’ ∈ (26) 
 This then allows a separation into knowledge/beliefs 
about either input or output, and either WS or AD users’ 
separate ones, because, of course, to have shared beliefs 
must mean that they are also held by each individual, who 
may also hold different, unshared knowledge/beliefs as 
well: 
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(16) = {WS∩∩∩∩AD∩∩∩∩Input }\* 
‘The knowledge the WS and AD users share of how the in-
put channel works.’ ∈ (16) 
(17) = {WS∩∩∩∩AD∩∩∩∩Output}\* 
‘The knowledge the WS and AD users share of how the 
output channel works.’ ∈ (17) 
(19) = {WS∩∩∩∩Input∩∩∩∩Output}\* 
‘The WS user’s knowledge of how their communication 
channel works.’ ∈ (19) 
(22) = {AD∩∩∩∩Input∩∩∩∩Output}\* 
‘The AD user’s knowledge of how their communication 
channel works.’ ∈ (22) 
 It is an analyst option whether to then add similar ele-
ments to areas (7), (10), (11) and (8), but one may choose 
not to do so because: (a) these areas have already been de-
fined with respect to device function, which isn’t a suffi-
cient reason for not adding alternative definitions; and (b) 
because most people know little about network connec-
tivity and assume an input-output reciprocity, which may 
or may not be true depending on which technologies are 
used, so it might be decided to reset (16) and (17) to empty 
(∅).  Similarly, if for simplicity here, we assume IO recip-
rocity, then we may also set the one-way transmission out-
side the WS and AD intersections, (3) and (4), to empty. 
 Area (6) in the PentaVenn’s top half has not been con-
sidered and it can represent other shared knowledge types: 
(6) = {WS∩∩∩∩AD}\*
‘Shared domain knowledge of the WS and AD users.’ ∈ (6) 
 This should automatically lead analysts to adding the in-
dividual WS and AD users’ domain knowledge to (1) and 
(2), respectively. 
 The resulting model can now be broken down into sev-
eral parts.  First, the IO paths (1)→(7)→(13)→(10)→(2) 
and (2)→(11)→(13)→(8)→(1), with the note that (13) is 
external to both WS and AD.  Second, users’ knowledge of 
their two-way communication, both their individual 
knowledge, (1) and (19) and (2) and (22) for WS and AD, 
respectively, and the communication knowledge they 
share, (26).  Third, the WS (1) and the AD (2) have indi-
vidual domain knowledge and some that they share (6). 
 Finally, areas (7) and (11), and (8) and (10) concern de-
vices and so don’t involve the users and thus are not ger-
mane to the context initially captured by the WS user and 
which we wish their device to capture and use.  Removing 
these four areas leaves just seven intersections in the top 
half of the PentaVenn diagram. 

Adding Context  
While the analysis so far has been cursory and heavily 
truncated, it is sufficient to start considering the focus of 
this paper, which is activity context, represented in the 
lower half of the PentaVenn diagram.  Using the diagram‘s 
vertical symmetry in Figure 3, there are14 areas of interest 

in white and empty intersections, for current purposes, are 
in grey.  Area (5) is also in grey as this, Context\*, repre-
sents context irrelevant to the system of interest. 

Figure 3. PentaVenn diagram of the current system of interest 
with the activities and their mirrored contexts in white. 

It should be obvious that area (9) will contain much con-
text information, but (29) is equally critical and can best be 
understood by starting with (25).  As area (13) concerns 
communication external to WS and AD, so (25) is the net-
work’s context, i.e. the actual communication bad spots.  
While there may be locations, e.g. tunnels, where there is 
no external connectivity, it is common knowledge in the 
U.K. that different mobile networks have differing cover-
age, (as well as devices having differing capabilities to deal 
with weak signals).  Consequently, to be more general, the 
context of “actual communication bad spots” must have 
additional context elements concerning different networks: 
(25) = {Input∩∩∩∩Output∩∩∩∩Context}\* 
‘Complete communication bad spot locations’ ∈ (25) 
‘Bad spot locations for different networks.’ ∈ (25) 
 The context of the AD, (12), is that it is remote from the 
WS and the initial scenario’s assumption was that it’s non-
mobile.  Further analysis might consider when both WS 
and AD are mobile and either or both suffering bad spots. 
(12) = {AD∩∩∩∩Context}\* 
‘AD is geographically remote from WS.’ ∈ (12) 
‘AD is non-mobile (temporary assumption.)’ ∈ (12) 
 Staying on the AD side, area (30) concerns the AD’s 
general bad spot context knowledge, i.e. independently of 
any particular WS.  Area (31) is the shared history, if any, 
of bad spot problems between WS and AD, just as (18) is 
the shared history of the WS and AD working together, ex-
cluding the bad spot context separated out in (31): 
(30) = {AD∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}\* 
‘AD’s general knowledge that bad communication spots 
can occur.’ ∈ (31) 
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(31) = {WS∩∩∩∩AD∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}\* 
‘WS and AD shared history of their bad spot communica-
tion problems.’ ∈ (31) 
(18) = {WS∩∩∩∩AD∩∩∩∩Context}\* 
‘WS and AD shared history excluding their bad spot com-
munication problems.’ ∈ (31) 
 This leaves (1) and (29), where this section started, with 
the general WS context and the WS’s bad spot context: 
(9) = {WS∩∩∩∩Context}\* 
‘The WS is on a train.’ ∈ (9) 
‘The WS knows the train’s route.’ ∈ (9) 
‘The WS knows their  current location.’ ∈ (9)  
‘The train is on-time or not.’ ∈ (9) 
‘File transmission time can be calculated.’ ∈ (9) 
(29) = {WS∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}\*
‘The WS knows the location of communication bad spots.’ 
∈ (29) 
‘Approaches to bad spots can be recognized.’ ∈ (29) 
‘Time to bad spots can be calculated.’ ∈ (29) 
 The (9) and (29) elements all arise directly from the 
original scenario.  The first three of (9) are straightforward, 
specifying a thing in relation to the WS: train, route and lo-
cation.  The forth is a shorthand for the thing ‘train timeta-
ble’, but, as discussed below, the critical thing is train pro-
gress.  The fifth element might just be a binary decision by 
the user, e.g. “It’s a big file to send.”, which should trigger 
the user to check their location for approaching bad spots. 
 Area (29) deals with communication bad spot context.  
The critical WS issue is whether there is time to transfer 
data before reaching a bad spot.  Thus, (29)’s last element 
uses all the other ones to calculate this.  Failure of any of 
the other elements will mean this calculation fails, e.g. if 
the WS isn’t on a train, then train tunnel bad spots will not 
be an issue and, obviously, the route and current location 
must be known by the WS.  The train on-time element is 
about journey progress, e.g. if, unscheduled, the train’s 
been stationary for some minutes, and particularly if this 
has happened several times, then the user might reasonably 
gamble that they have time to do a large data transfer with 
the AD, even though close to a bad spot. 
 While sufficient for illustration, a more detailed analy-
sis, of specific devices, networks, etc. would generate more 
detailed elements.  It should be recalled that all 15 upper 
half PentaVenn diagram areas can have assigned meaning-
ful elements, so could have context elements in the lower 
half.  The one-way communication to and from the WS 
and AD probably needs analysis and, to make the software 
general, that both WS and AD are mobile.  This leads to 
scenarios where the AD is actively sending data, in con-
trast to the WS downloading, and whether the AD and WS 
negotiate before transmission, i.e. the AD needs to know if 
the WS has time before a bad spot to receive the data. 

Context Capture 
The set {Context} specifies context, whereas much of the 
original scenario is about how the user captured it.  If the 
device is to (mostly) replace the user, then it should cap-
ture, and then use, equivalent context information.  Context 
capture can be added as another set using SST, and al-
though all five PentaVenn diagram’s sets have been used, 
the upper half of the diagram can be reused to represent 
capture while keeping the lower half for specifying what is 
captured.  This maintains Figure 3’s white/grey symmetry 
and the convention adopted is that the upper half numbers 
will be preceded by CC, e.g. (CC1) =
{WS∩ContextCapture}\* as the mirror image of (9) = 
{WS∩Context}\* . 
 Starting with (9) and (29), then the non-calculation ele-
ments specified can be rewritten: 
(CC1) = {WS∩∩∩∩ContextCapture}\* 
‘The device captures that the WS is on a train.’ ∈ (CC1) 
‘The device has captured the train’s route.’ ∈ (CC1) 
‘The device captures the WS’s  current location.’ ∈ (CC1)  
‘The device captures whether the train is on-time or not.’ 
∈ (CC1) 
(CC19) = {WS∩∩∩∩Input∩∩∩∩Output∩∩∩∩ContextCapture}\*
‘The device has captured the location of communication 
bad spots.’ ∈ (CC19) 
‘The device has captured the location of approaches to bad 
spots.’ ∈ (CC19) 
 A difference between these elements is their use of “cap-
tures” versus “has captured”.  Both (CC19) elements must 
be captured before they become relevant, i.e. it’s too late if 
a bad spot is reached before its location is captured and 
used.  Necessarily, the (CC1) route element must be cap-
tured so as to relate this to the (CC19) elements. 
 Device intelligence and autonomy are major, related de-
sign issues for context capture.  For example, ‘How does 
the device know that it and the user, i.e. the WS, are on the 
train?’  A uncontroversial design assumption is that the de-
vice will have a GPS system which the device can interro-
gate to place itself on the train’s route.  While this seems 
much simpler than what the unassisted user had to do, 
looking out of the train window and so forth, just geo-
graphical location, no matter how accurate, comes at a cost 
of other context information that the user has access to and 
the device does not.  For example, the user is at their de-
parture station and turns on their laptop device.  The device 
knows it is in the station, but does not know that it is on a 
train, e.g. they may be on a platform seat or in the platform 
buffet, and if on a train, it may not be the expected one.  A 
very simple context capturing device might check its loca-
tion and capture its missing context by asking the user if 
they are on a train and, if so, which one.  A slightly more 
sophisticated one might have programmed rules that check 
time and location and assumes it’s the usual train until it 
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gets contrary information, e.g. the train is late departing the 
station. 
 At this level it is disputable whether this is really Artifi-
cial Intelligence (AI), but the advantage is that the device 
does not have to disturb the user. The device can then, in-
visible to the user, monitor route progress until external 
data  transfer is attempted.  This has to involve area (1), not 
context but the user and device’s work, and transfer time 
must be calculated.  Here capture is needed from the work 
system, WS\*, and then passed to the context element: 
‘File transmission time can be calculated’ ∈ (9) 
 The calculation could be as crude as just exceeding a set 
file size, or it could  be based on claimed network bit rate 
and a more advanced system might have context informa-
tion about bit rates being achieved during the current or 
past activities near the locale.  Since (19), (29) and (CC19) 
concern network knowledge, then elements concerning bit 
rates can be added to these as in the manner above. 
 Train routes and timetables might be easily captured by 
a device, perhaps as a semantic web application, which still 
leaves the problem of identifying en route communication 
bad spots.  While a bad spots map might be available from 
the web, the context that different networks (and different 
devices) have differing bad spots has already been men-
tioned.  This might lead to designs that involve the device 
learning, and that usually means quite serious AI. 
 At the moment, most symbolic AI systems are relatively 
poor at learning, i.e. substantially they are human pro-
grammed.  In contrast, learning is the strength of neural 
networks, but currently at the expense of being computa-
tionally resource hungry, and/or often slow, and generally 
perceived as too exotically leading edge for most applica-
tions.  On the other hand, and whatever AI used, a device 
that learned about its own bad spots and their approaches 
would be a superior design.  It could even create its own 
training examples during journeys, without actually trans-
ferring files.  Whether it could learn about delays (perhaps 
20% of journeys), and even of trains going faster after de-
lays, is probably at the edge of current AI capabilities. 
 Finally, if developers were to take the network connec-
tivity context capture by AI design route, where a device 
continuously monitored its connectivity and learned from it 
to produce some form of stochastic, predictive map, then it 
might have much more general applications than just to 
train journeys, or even just to journeys by other means of 
transport.  Just which is beyond the scope and concerns of 
this paper and so is left the imagination of designers. 

Personal Observations 
The scenario used in this paper was written as a AAAI 
Workshop discussion document several weeks before the 
paper was started.  I’d just haphazardly generated scenarios 
using an informal user-computer interface model, which is 

how the user’s map (Figure 1) arose.  That such a SatNav 
interface as I first imagined was replaced by other designs 
following the systems analysis above is one, generally rare, 
piece of concrete evidence of how doing an analysis can 
change, eventually, understanding the system of interest.  
What follows are a few, more subjective, observations on 
how using a formal systems modeling approach helped me.  
Overall, I am sure that having SST and the PentaVenn dia-
gram made me think differently about the system. 
 What’s invisible to readers of papers such as this one is 
the complexity of doing the analysis and, in particular, all 
the alternative models that were tried and rejected.  Al-
though I’ve used SST for a dozen years, it was primarily 
the PentaVenn diagram that I used when constructing 
models.  My basic approach was to generate part of a sce-
nario and write a note of it directly on the (colored) dia-
gram.  Then one can use the diagram’s symmetry to inves-
tigate other intersection areas which might be involved.  
For example, thinking about two-way simultaneous com-
munication (e.g. telephones), then this involves area (13) 
outside the WS and AD.  However, if WS or AD use a 
conference ‘phone that allows either microphone or 
speaker to be active, but not both simultaneously so as to 
prevent auditory feedback, then while this doesn’t affect 
(13) it does affect areas where the WS and AD and their in-
terfaces intersect, which ones depending on who is using 
the conference ‘phone.  Also, people adjust their behavior 
to such ‘phones, although they may or may not be con-
scious of their adjustments.  A major advantage of using 
the PentaVenn diagram was to keep me on track as to the 
WS and AD as the mobile and remote systems, respec-
tively, and not to slip into a user-computer interface model. 
 While admittedly only poorly specified as text elements, 
adding the context and capture parts of the analysis was 
much easier than building the first, acceptable version of 
the upper half of the model.  This ease was due to being 
able to exploit the diagram’s symmetry so that context 
could be specified with respect to the non-context mirror 
elements.  For example, if (13) is external two-way com-
munication, then its mirror (25) must be the actual com-
munication bad spots and this can then be contrasted with 
the WS user’s knowledge of such bad spots (29). 
 The author has often commented (e.g. Diaper, 2001, 
2004) that some “typographical” errors are inevitable with 
large (task) analyses.  An advantage of a formal system is 
that these should be readily detected.  Such was the case 
here, where I’d transposed two numbers on the PentaVenn 
diagram which were detected as soon as they were used. 

Discussion and Conclusions  

What can the author of these two papers hope to achieve?  
Also, what can’t possibly be achieved?  Starting with the 

18



latter, negatives, to get them out of the way quickly, first 
there are several omissions, including the confessed lack of 
a literature review.  Thus there is no discourse on the many 
ways that people have thought about context, which may 
be a bonus as the overall conclusion that the author has 
reached, as a direct consequence of working on these two 
papers, is that context is not especially more complex than 
many other things in systems models.  The roles of meth-
ods in the software industries is much omitted and, entirely 
and unfortunately, also is any discussion of the advantages 
of formal methods, and their limitations, of course.  The 
description of SST is very incomplete, for example, neither 
paper deals with set elements beyond their textual descrip-
tions and there is no attempt at describing how SST and the 
PentaVenn diagram can be used as part of a method, al-
though Diaper (2000) explicitly provides such a method 
(SST4SM – SST for Systems Modeling, later referred to as 
the SAM - Systems Analysis Method).  This last omission 
may not be a problem in that one thing the author always 
knew about these papers was that they could not, and 
would not try, to convince people to use his methods and 
formalisms.  At the very best, a few people might be suffi-
ciently interested to contact the author and find out more. 
 Without denying other possible negatives, what these 
two papers do achieve are several very positive and, the 
author hopes, useful things.  First, the analysis of the two 
examples in the pair of papers, no matter how cursory and 
incomplete, is a call for clarity of thought.  The personal 
observations subsection above is important to combat the 
impression that such general systems analyses are straight-
forward, even for experts.  Apart from the easy to make er-
ror of slipping into considering user-device dialogue sce-
narios when these are inappropriate, the logical complete-
ness of an SST model and its PentaVenn diagrams forces a 
structured thinking approach on analysts, making them fill 
in other intersection areas than the ones they start with.  
This then encourages generating alternative, related scenar-
ios and, importantly, a rationale for generating them. 
 In these two papers, the Dowell and Long (e.g. 1989) 
WS and AD model, and the author’s extensions to this 
(Diaper, 2004; Diaper and Sanger, 2006), is important as 
illustrated are two genuinely different possible perspec-
tives, the one where users and devices operate together in 
the WS to perform work in the AD, and the user-computer 
dialogue model where users and their devices are separate, 
in the WS and AD, respectively.  Much is often made of 
the importance (and complexity therefore) of having mul-
tiple perspectives in systems analysis, but well formed ex-
amples are much rarer. 
 That complexity and context go together will be a con-
sensus at the AAAI Workshop.  This is an error, according 
to the conclusions reached by the author after preparing 
these two papers.  Modeling context is not really different 
from modeling the other sorts of things and relationships in 

human-computer systems.  Indeed, in one sense context is 
easier to model because, as argued in the first paper, its ef-
fects are one-way as it can change other parts of a system 
but it will not itself be changed.  If we are already model-
ing people, then we are already modeling the most com-
plex parts of any system.  Much of such modeling is of in-
tangible things, of thought, memory, beliefs, plans, goals 
and, always, within social systems, accepting Wittgen-
stein’s proposal that a private language is impossible.   
 Unlike many software engineering methods which tend 
to focus narrowly, e.g. on data flows, entities, objects, it is 
necessary for a general systems approach to be able to 
model anything.  This is not a problem for general mathe-
matical/logical systems as definition is the analysts’ pre-
rogative, e.g. in set theory, initially each set is defined 
however an analyst wishes.  The most complex anything to 
be modeled is still people, and so modeling context will be 
most complex when it involves people rather than simpler 
systems such as the weather, or people’s models of things, 
such as of their models of social or economic systems.  
These papers’ message is therefore: ‘Context?  Do Not 
Panic.’, because context is like all the other complicated 
things that are already modeled in a general systems analy-
sis approach. 
 There is, however, a final caveat, if analysts don’t think 
of it, then it won’t be in their analysis.  This, of course, is 
true for any systems analysis approach.  Even so, if people 
don’t think of economic, business, social, cultural, ethical 
or religious contexts, then they won’t be modeled and such 
contexts can be difficult to identify when their effects are 
pervasive, i.e. where the system is always affected by such 
a context.  In contrast, problems encountered within WS 
and AD analyses usually makes systems components far 
more visible and provide a basis for how analysts define 
and articulate their systems models. 
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