
A Formal Systems Approach to Machine Capture,

Representation and Use of Activity Context

Dan Diaper
DDD SYSTEMS, Bournemouth, BH11 8SZ, U.K.

ddiaper@ntlworld.com

Abstract
Communication bad spots on a commuter’s train journey
provide an example of context for the activities of a work
system (user and devices) attempting to transfer large vol-
umes of data. A simplified set theoretic based approach il-
lustrates how the activities, their context, and device context
capture can start to be analyzed. It is argued that context is
not significantly harder to model than other, human aspects
in a general systems analysis.

 Introduction

This paper is the second of a pair prepared for the 2011
AAAI Activity Context Representation Workshop. The
first paper, ‘Defining and Representing Activity Context
for Systems Analysis’, summarizes the author’s formal
Simplified Set Theory (SST) approach and the use of his
PentaVenn diagram. This second paper uses these in a
modest, partially worked example to explore the contexts
of an activity and how a formal approach can aid systems
analysts by providing structured guidance.

The Train Connectivity Scenario

The scenario is that a user with one or more digital devices,
in England, are on their regular commuter train. At several
locations on the train journey, external network connec-
tions are poor or absent, perhaps because of tun-
nels/cuttings or the absence of cell phone masts. Being a
regular commuter, the user has captured, i.e. learned from
experience, the train route’s environmental context, that
there are predictable spots where external communication
is often difficult or is impossible. Knowing this, the user
adjusts what they do to work around these spots. In par-
ticular, the user avoids starting their frequent, large file ex-
ternal transfers when the train is approaching a communi-

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cation bad spot. Concerning solutions, it is assumed there
are too many remote sites using too many different plat-
forms for it to be feasible to globally change systems soft-
ware to allow interrupted data transfers to recommence.

The Unassisted User Scenario
Starting with the above scenario, first the user has to iden-
tify their problem, that too often they attempt long data
transfers (e.g. 5-20 minutes) to a remote site that fail due to
connectivity bad spots on their commuter train route. The
user already knows when, if the train is on time, the bad
spots will occur. Britain’s trains are not noted for their
punctuality and they are deemed on-time within a window
of ten or so minutes, so just using the train timetable to
predict bad spots is not feasible. Over a number of jour-
neys, the user attempts to find journey landmarks that pre-
cede the bad spots by a few minutes (“a few” being less
than the predicted time for file transfer). Some landmarks
might be easy to identify, e.g. just after a station stop,
whereas others may be just glimpsed through the window.
Ideally, landmarks need to persist as, if the user is working,
then they won’t be looking out of the window, and even an
easily identified landmark might be passed in seconds.
Such persistence is rare, so what the user will do is choose
a series of visual landmarks that precede a bad spot so that
they come to recognize the area when they look out of the
window before they perform a major remote site access.
 Being human, most of the user’s activity is perceptual
and cognitive, learning then recognizing from memory
where the train is relative to communication bad spots and
estimating how long before these are likely to be reached.
The user might compile a short list as an aide memoire or,
being computer literate, they produce a map of their route
and mark the bad spots and their approaches (Figure 1).
 In Figure 1, the width of the bars represents the duration
of the journey that will be affected by communication bad
spots (black) and their approaches (grey), e.g. bad spots b
and c have broader approach areas to represent that trains

14

Activity Context Representation — Techniques and Languages: Papers from the 2011 AAAI Workshop (WS-11-04)

are usually going faster here. As a memory aid, the users’
hard copy map could be credit card sized, but, if its main
purpose relates to using a laptop, then the map can be dis-
played on screen, which the user might do in a small win-
dow when the laptop is started on the train.

Figure 1. User’s communication black spot map showing four
spots (a-d) in black and their approach areas in grey.

 This is as far as one user might go, but the project is to
develop an application to support users’ remote file han-
dling and to remove the considerable cognitive effort that a
user would have to make investigating and developing the
map, and ameliorating the still considerable cognitive load
associated with its use. Unassisted users will makes errors,
because they are busy working, so might forget the context
completely or forget to look out of the window in time, or
they may fail to recognize where they are as one landscape
may look much like another in poor visibility conditions,
e.g. heavy rain, fog, or dirty windows in low sunlight, and,
of course, at night.

Systems Analysis

General systems analysis is different from many other ap-
proaches in HCI and software engineering because of its
emphasis on the context in which activities occur. The
contrast might be between a user-computer dialogue model
and the more general systems model of an activity. In the
latter, using the PentaVenn diagram and SST (Figure 2),
the work system set A={WS} consists of a user and their
digital devices (e.g. laptop, ‘phone, PDA). The Applica-
tion Domain set B={AD} is the remote site and there are
two interface sets, C={Input}, from the WS to AD, and
D={Output}, vice versa. The fifth set is E={Context}.
 An obvious first step is to consider normal communica-
tion between WS and AD. Analysts need to understand
and define each intersection and the communicative rela-
tionships (paths) through the diagram, e.g. sending an
email to a remote site, a five intersection path is:
(1) = WS*
‘The user and device compose an email.’ ∈ (1)
(7) = {WS∩∩∩∩Input}*

‘The user’s device sends an email.’ ∈ (7)
(3) = Input*
‘External network transmits email packets.’ ∈ (3)
(10) = {AD∩∩∩∩Input}*
‘The AD computer receives an email.’ ∈ (10)
(2) = AD*
‘The AD computer and user displays/reads email.’ ∈ (2)
 In the other direction the path is:
(2)→(11)→(4)→(8)→(1). This is for one-way communi-
cation and there are two other paths for the simultaneous
case, e.g. a mobile ‘phone call, where (13), {In-
put∩Output}*, replaces the middle intersections, either
(3) or (4). Already nine of the upper fifteen intersections
have been populated, if not yet done well.

Figure 2. PentaVenn diagram of 5 sets (A-E) and with the 31 in-
tersection areas numbered.

 An easy way to populate the remaining six areas is to in-
terpret them initially with respect to people’s knowl-
edge/beliefs of the data transmission activity:
(26) = {WS∩∩∩∩AD∩∩∩∩Input∩∩∩∩Output}*
‘The knowledge/beliefs the WS and AD users share of how
their communication channels work.’ ∈ (26)
 This then allows a separation into knowledge/beliefs
about either input or output, and either WS or AD users’
separate ones, because, of course, to have shared beliefs
must mean that they are also held by each individual, who
may also hold different, unshared knowledge/beliefs as
well:

15

(16) = {WS∩∩∩∩AD∩∩∩∩Input }*
‘The knowledge the WS and AD users share of how the in-
put channel works.’ ∈ (16)
(17) = {WS∩∩∩∩AD∩∩∩∩Output}*
‘The knowledge the WS and AD users share of how the
output channel works.’ ∈ (17)
(19) = {WS∩∩∩∩Input∩∩∩∩Output}*
‘The WS user’s knowledge of how their communication
channel works.’ ∈ (19)
(22) = {AD∩∩∩∩Input∩∩∩∩Output}*
‘The AD user’s knowledge of how their communication
channel works.’ ∈ (22)
 It is an analyst option whether to then add similar ele-
ments to areas (7), (10), (11) and (8), but one may choose
not to do so because: (a) these areas have already been de-
fined with respect to device function, which isn’t a suffi-
cient reason for not adding alternative definitions; and (b)
because most people know little about network connec-
tivity and assume an input-output reciprocity, which may
or may not be true depending on which technologies are
used, so it might be decided to reset (16) and (17) to empty
(∅). Similarly, if for simplicity here, we assume IO recip-
rocity, then we may also set the one-way transmission out-
side the WS and AD intersections, (3) and (4), to empty.
 Area (6) in the PentaVenn’s top half has not been con-
sidered and it can represent other shared knowledge types:
(6) = {WS∩∩∩∩AD}*
‘Shared domain knowledge of the WS and AD users.’ ∈ (6)
 This should automatically lead analysts to adding the in-
dividual WS and AD users’ domain knowledge to (1) and
(2), respectively.
 The resulting model can now be broken down into sev-
eral parts. First, the IO paths (1)→(7)→(13)→(10)→(2)
and (2)→(11)→(13)→(8)→(1), with the note that (13) is
external to both WS and AD. Second, users’ knowledge of
their two-way communication, both their individual
knowledge, (1) and (19) and (2) and (22) for WS and AD,
respectively, and the communication knowledge they
share, (26). Third, the WS (1) and the AD (2) have indi-
vidual domain knowledge and some that they share (6).
 Finally, areas (7) and (11), and (8) and (10) concern de-
vices and so don’t involve the users and thus are not ger-
mane to the context initially captured by the WS user and
which we wish their device to capture and use. Removing
these four areas leaves just seven intersections in the top
half of the PentaVenn diagram.

Adding Context
While the analysis so far has been cursory and heavily
truncated, it is sufficient to start considering the focus of
this paper, which is activity context, represented in the
lower half of the PentaVenn diagram. Using the diagram‘s
vertical symmetry in Figure 3, there are14 areas of interest

in white and empty intersections, for current purposes, are
in grey. Area (5) is also in grey as this, Context*, repre-
sents context irrelevant to the system of interest.

Figure 3. PentaVenn diagram of the current system of interest
with the activities and their mirrored contexts in white.

It should be obvious that area (9) will contain much con-
text information, but (29) is equally critical and can best be
understood by starting with (25). As area (13) concerns
communication external to WS and AD, so (25) is the net-
work’s context, i.e. the actual communication bad spots.
While there may be locations, e.g. tunnels, where there is
no external connectivity, it is common knowledge in the
U.K. that different mobile networks have differing cover-
age, (as well as devices having differing capabilities to deal
with weak signals). Consequently, to be more general, the
context of “actual communication bad spots” must have
additional context elements concerning different networks:
(25) = {Input∩∩∩∩Output∩∩∩∩Context}*
‘Complete communication bad spot locations’ ∈ (25)
‘Bad spot locations for different networks.’ ∈ (25)
 The context of the AD, (12), is that it is remote from the
WS and the initial scenario’s assumption was that it’s non-
mobile. Further analysis might consider when both WS
and AD are mobile and either or both suffering bad spots.
(12) = {AD∩∩∩∩Context}*
‘AD is geographically remote from WS.’ ∈ (12)
‘AD is non-mobile (temporary assumption.)’ ∈ (12)
 Staying on the AD side, area (30) concerns the AD’s
general bad spot context knowledge, i.e. independently of
any particular WS. Area (31) is the shared history, if any,
of bad spot problems between WS and AD, just as (18) is
the shared history of the WS and AD working together, ex-
cluding the bad spot context separated out in (31):
(30) = {AD∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}*
‘AD’s general knowledge that bad communication spots
can occur.’ ∈ (31)

16

(31) = {WS∩∩∩∩AD∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}*
‘WS and AD shared history of their bad spot communica-
tion problems.’ ∈ (31)
(18) = {WS∩∩∩∩AD∩∩∩∩Context}*
‘WS and AD shared history excluding their bad spot com-
munication problems.’ ∈ (31)
 This leaves (1) and (29), where this section started, with
the general WS context and the WS’s bad spot context:
(9) = {WS∩∩∩∩Context}*
‘The WS is on a train.’ ∈ (9)
‘The WS knows the train’s route.’ ∈ (9)
‘The WS knows their current location.’ ∈ (9)
‘The train is on-time or not.’ ∈ (9)
‘File transmission time can be calculated.’ ∈ (9)
(29) = {WS∩∩∩∩Input∩∩∩∩Output∩∩∩∩Context}*
‘The WS knows the location of communication bad spots.’
∈ (29)
‘Approaches to bad spots can be recognized.’ ∈ (29)
‘Time to bad spots can be calculated.’ ∈ (29)
 The (9) and (29) elements all arise directly from the
original scenario. The first three of (9) are straightforward,
specifying a thing in relation to the WS: train, route and lo-
cation. The forth is a shorthand for the thing ‘train timeta-
ble’, but, as discussed below, the critical thing is train pro-
gress. The fifth element might just be a binary decision by
the user, e.g. “It’s a big file to send.”, which should trigger
the user to check their location for approaching bad spots.
 Area (29) deals with communication bad spot context.
The critical WS issue is whether there is time to transfer
data before reaching a bad spot. Thus, (29)’s last element
uses all the other ones to calculate this. Failure of any of
the other elements will mean this calculation fails, e.g. if
the WS isn’t on a train, then train tunnel bad spots will not
be an issue and, obviously, the route and current location
must be known by the WS. The train on-time element is
about journey progress, e.g. if, unscheduled, the train’s
been stationary for some minutes, and particularly if this
has happened several times, then the user might reasonably
gamble that they have time to do a large data transfer with
the AD, even though close to a bad spot.
 While sufficient for illustration, a more detailed analy-
sis, of specific devices, networks, etc. would generate more
detailed elements. It should be recalled that all 15 upper
half PentaVenn diagram areas can have assigned meaning-
ful elements, so could have context elements in the lower
half. The one-way communication to and from the WS
and AD probably needs analysis and, to make the software
general, that both WS and AD are mobile. This leads to
scenarios where the AD is actively sending data, in con-
trast to the WS downloading, and whether the AD and WS
negotiate before transmission, i.e. the AD needs to know if
the WS has time before a bad spot to receive the data.

Context Capture
The set {Context} specifies context, whereas much of the
original scenario is about how the user captured it. If the
device is to (mostly) replace the user, then it should cap-
ture, and then use, equivalent context information. Context
capture can be added as another set using SST, and al-
though all five PentaVenn diagram’s sets have been used,
the upper half of the diagram can be reused to represent
capture while keeping the lower half for specifying what is
captured. This maintains Figure 3’s white/grey symmetry
and the convention adopted is that the upper half numbers
will be preceded by CC, e.g. (CC1) =
{WS∩ContextCapture}* as the mirror image of (9) =
{WS∩Context}* .
 Starting with (9) and (29), then the non-calculation ele-
ments specified can be rewritten:
(CC1) = {WS∩∩∩∩ContextCapture}*
‘The device captures that the WS is on a train.’ ∈ (CC1)
‘The device has captured the train’s route.’ ∈ (CC1)
‘The device captures the WS’s current location.’ ∈ (CC1)
‘The device captures whether the train is on-time or not.’
∈ (CC1)
(CC19) = {WS∩∩∩∩Input∩∩∩∩Output∩∩∩∩ContextCapture}*
‘The device has captured the location of communication
bad spots.’ ∈ (CC19)
‘The device has captured the location of approaches to bad
spots.’ ∈ (CC19)
 A difference between these elements is their use of “cap-
tures” versus “has captured”. Both (CC19) elements must
be captured before they become relevant, i.e. it’s too late if
a bad spot is reached before its location is captured and
used. Necessarily, the (CC1) route element must be cap-
tured so as to relate this to the (CC19) elements.
 Device intelligence and autonomy are major, related de-
sign issues for context capture. For example, ‘How does
the device know that it and the user, i.e. the WS, are on the
train?’ A uncontroversial design assumption is that the de-
vice will have a GPS system which the device can interro-
gate to place itself on the train’s route. While this seems
much simpler than what the unassisted user had to do,
looking out of the train window and so forth, just geo-
graphical location, no matter how accurate, comes at a cost
of other context information that the user has access to and
the device does not. For example, the user is at their de-
parture station and turns on their laptop device. The device
knows it is in the station, but does not know that it is on a
train, e.g. they may be on a platform seat or in the platform
buffet, and if on a train, it may not be the expected one. A
very simple context capturing device might check its loca-
tion and capture its missing context by asking the user if
they are on a train and, if so, which one. A slightly more
sophisticated one might have programmed rules that check
time and location and assumes it’s the usual train until it

17

gets contrary information, e.g. the train is late departing the
station.
 At this level it is disputable whether this is really Artifi-
cial Intelligence (AI), but the advantage is that the device
does not have to disturb the user. The device can then, in-
visible to the user, monitor route progress until external
data transfer is attempted. This has to involve area (1), not
context but the user and device’s work, and transfer time
must be calculated. Here capture is needed from the work
system, WS*, and then passed to the context element:
‘File transmission time can be calculated’ ∈ (9)
 The calculation could be as crude as just exceeding a set
file size, or it could be based on claimed network bit rate
and a more advanced system might have context informa-
tion about bit rates being achieved during the current or
past activities near the locale. Since (19), (29) and (CC19)
concern network knowledge, then elements concerning bit
rates can be added to these as in the manner above.
 Train routes and timetables might be easily captured by
a device, perhaps as a semantic web application, which still
leaves the problem of identifying en route communication
bad spots. While a bad spots map might be available from
the web, the context that different networks (and different
devices) have differing bad spots has already been men-
tioned. This might lead to designs that involve the device
learning, and that usually means quite serious AI.
 At the moment, most symbolic AI systems are relatively
poor at learning, i.e. substantially they are human pro-
grammed. In contrast, learning is the strength of neural
networks, but currently at the expense of being computa-
tionally resource hungry, and/or often slow, and generally
perceived as too exotically leading edge for most applica-
tions. On the other hand, and whatever AI used, a device
that learned about its own bad spots and their approaches
would be a superior design. It could even create its own
training examples during journeys, without actually trans-
ferring files. Whether it could learn about delays (perhaps
20% of journeys), and even of trains going faster after de-
lays, is probably at the edge of current AI capabilities.
 Finally, if developers were to take the network connec-
tivity context capture by AI design route, where a device
continuously monitored its connectivity and learned from it
to produce some form of stochastic, predictive map, then it
might have much more general applications than just to
train journeys, or even just to journeys by other means of
transport. Just which is beyond the scope and concerns of
this paper and so is left the imagination of designers.

Personal Observations
The scenario used in this paper was written as a AAAI
Workshop discussion document several weeks before the
paper was started. I’d just haphazardly generated scenarios
using an informal user-computer interface model, which is

how the user’s map (Figure 1) arose. That such a SatNav
interface as I first imagined was replaced by other designs
following the systems analysis above is one, generally rare,
piece of concrete evidence of how doing an analysis can
change, eventually, understanding the system of interest.
What follows are a few, more subjective, observations on
how using a formal systems modeling approach helped me.
Overall, I am sure that having SST and the PentaVenn dia-
gram made me think differently about the system.
 What’s invisible to readers of papers such as this one is
the complexity of doing the analysis and, in particular, all
the alternative models that were tried and rejected. Al-
though I’ve used SST for a dozen years, it was primarily
the PentaVenn diagram that I used when constructing
models. My basic approach was to generate part of a sce-
nario and write a note of it directly on the (colored) dia-
gram. Then one can use the diagram’s symmetry to inves-
tigate other intersection areas which might be involved.
For example, thinking about two-way simultaneous com-
munication (e.g. telephones), then this involves area (13)
outside the WS and AD. However, if WS or AD use a
conference ‘phone that allows either microphone or
speaker to be active, but not both simultaneously so as to
prevent auditory feedback, then while this doesn’t affect
(13) it does affect areas where the WS and AD and their in-
terfaces intersect, which ones depending on who is using
the conference ‘phone. Also, people adjust their behavior
to such ‘phones, although they may or may not be con-
scious of their adjustments. A major advantage of using
the PentaVenn diagram was to keep me on track as to the
WS and AD as the mobile and remote systems, respec-
tively, and not to slip into a user-computer interface model.
 While admittedly only poorly specified as text elements,
adding the context and capture parts of the analysis was
much easier than building the first, acceptable version of
the upper half of the model. This ease was due to being
able to exploit the diagram’s symmetry so that context
could be specified with respect to the non-context mirror
elements. For example, if (13) is external two-way com-
munication, then its mirror (25) must be the actual com-
munication bad spots and this can then be contrasted with
the WS user’s knowledge of such bad spots (29).
 The author has often commented (e.g. Diaper, 2001,
2004) that some “typographical” errors are inevitable with
large (task) analyses. An advantage of a formal system is
that these should be readily detected. Such was the case
here, where I’d transposed two numbers on the PentaVenn
diagram which were detected as soon as they were used.

Discussion and Conclusions

What can the author of these two papers hope to achieve?
Also, what can’t possibly be achieved? Starting with the

18

latter, negatives, to get them out of the way quickly, first
there are several omissions, including the confessed lack of
a literature review. Thus there is no discourse on the many
ways that people have thought about context, which may
be a bonus as the overall conclusion that the author has
reached, as a direct consequence of working on these two
papers, is that context is not especially more complex than
many other things in systems models. The roles of meth-
ods in the software industries is much omitted and, entirely
and unfortunately, also is any discussion of the advantages
of formal methods, and their limitations, of course. The
description of SST is very incomplete, for example, neither
paper deals with set elements beyond their textual descrip-
tions and there is no attempt at describing how SST and the
PentaVenn diagram can be used as part of a method, al-
though Diaper (2000) explicitly provides such a method
(SST4SM – SST for Systems Modeling, later referred to as
the SAM - Systems Analysis Method). This last omission
may not be a problem in that one thing the author always
knew about these papers was that they could not, and
would not try, to convince people to use his methods and
formalisms. At the very best, a few people might be suffi-
ciently interested to contact the author and find out more.
 Without denying other possible negatives, what these
two papers do achieve are several very positive and, the
author hopes, useful things. First, the analysis of the two
examples in the pair of papers, no matter how cursory and
incomplete, is a call for clarity of thought. The personal
observations subsection above is important to combat the
impression that such general systems analyses are straight-
forward, even for experts. Apart from the easy to make er-
ror of slipping into considering user-device dialogue sce-
narios when these are inappropriate, the logical complete-
ness of an SST model and its PentaVenn diagrams forces a
structured thinking approach on analysts, making them fill
in other intersection areas than the ones they start with.
This then encourages generating alternative, related scenar-
ios and, importantly, a rationale for generating them.
 In these two papers, the Dowell and Long (e.g. 1989)
WS and AD model, and the author’s extensions to this
(Diaper, 2004; Diaper and Sanger, 2006), is important as
illustrated are two genuinely different possible perspec-
tives, the one where users and devices operate together in
the WS to perform work in the AD, and the user-computer
dialogue model where users and their devices are separate,
in the WS and AD, respectively. Much is often made of
the importance (and complexity therefore) of having mul-
tiple perspectives in systems analysis, but well formed ex-
amples are much rarer.
 That complexity and context go together will be a con-
sensus at the AAAI Workshop. This is an error, according
to the conclusions reached by the author after preparing
these two papers. Modeling context is not really different
from modeling the other sorts of things and relationships in

human-computer systems. Indeed, in one sense context is
easier to model because, as argued in the first paper, its ef-
fects are one-way as it can change other parts of a system
but it will not itself be changed. If we are already model-
ing people, then we are already modeling the most com-
plex parts of any system. Much of such modeling is of in-
tangible things, of thought, memory, beliefs, plans, goals
and, always, within social systems, accepting Wittgen-
stein’s proposal that a private language is impossible.
 Unlike many software engineering methods which tend
to focus narrowly, e.g. on data flows, entities, objects, it is
necessary for a general systems approach to be able to
model anything. This is not a problem for general mathe-
matical/logical systems as definition is the analysts’ pre-
rogative, e.g. in set theory, initially each set is defined
however an analyst wishes. The most complex anything to
be modeled is still people, and so modeling context will be
most complex when it involves people rather than simpler
systems such as the weather, or people’s models of things,
such as of their models of social or economic systems.
These papers’ message is therefore: ‘Context? Do Not
Panic.’, because context is like all the other complicated
things that are already modeled in a general systems analy-
sis approach.
 There is, however, a final caveat, if analysts don’t think
of it, then it won’t be in their analysis. This, of course, is
true for any systems analysis approach. Even so, if people
don’t think of economic, business, social, cultural, ethical
or religious contexts, then they won’t be modeled and such
contexts can be difficult to identify when their effects are
pervasive, i.e. where the system is always affected by such
a context. In contrast, problems encountered within WS
and AD analyses usually makes systems components far
more visible and provide a basis for how analysts define
and articulate their systems models.

References
Diaper, D. (2000) Hardening Soft Systems Methodology. in
McDonald, S., Waern, Y. and Cockton, G. (Eds.) People and
Computers XIV. 183-204. Springer.

Diaper, D. (2001) Task Analysis for Knowledge Descriptions
(TAKD): A Requiem for a Method. Behaviour and Information
Technology. 20, 3, 199-212.

Diaper, D. (2004) Understanding Task Analysis for Human-
Computer Interaction. in Diaper, D. and Stanton, N.A. (Eds.) The
Handbook of Task Analysis for Human-Computer Interaction. 5-
47. Lawrence Erlbaum Associates.

Diaper, D. and Sanger, C. (2006) Tasks For and Task In Human-
Computer Interaction. Interacting with Computers, 18, 1, 117-
138.

Dowell, J. and Long, J. (1989) Towards a Conception for an En-
gineering Discipline of Human Factors. Ergonomics, 32, 11,
1513-1535.

19

