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Abstract

Stackelberg games have recently gained significant attention
for resource allocation decisions in security settings. One
critical assumption of traditional Stackelberg models is that
all players are perfectly rational and that the followers per-
fectly observe the leader’s strategy. However, in real-world
security settings, security agencies must deal with human ad-
versaries who may not always follow the utility maximizing
rational strategy. Accounting for these likely deviations is
important since they may adversely affect the leader’s (secu-
rity agency’s) utility. In fact, a number of behavioral game-
theoretic models have begun to emerge for these domains.
Two such models in particular are COBRA (Combined Ob-
servability and Bounded Rationality Assumption) and BRQR
(Best Response to Quantal Response), which have both been
shown to outperform game-theoretic optimal models against
human adversaries within a security setting based on Los An-
geles International Airport (LAX). Under perfect observation
conditions, BRQR has been shown to be the leading con-
tender for addressing human adversaries. In this work we
explore these models under limited observation conditions.
Due to human anchoring biases, BRQR’s performance may
suffer under limited observation conditions. An anchoring
bias is when, given no information about the occurrence of
a discrete set of events, humans will tend to assign an equal
weight to the occurrence of each event (a uniform distribu-
tion). This study makes three main contributions: (i) we
incorporate an anchoring bias into BRQR to improve per-
formance under limited observation; (ii) we explore finding
appropriate parameter settings for BRQR under limited ob-
servation; (iii) we compare BRQR’s performance versus CO-
BRA under limited observation conditions.

Introduction

Game theory has become a useful tool for reasoning about
security settings and assigning limited security resources
(Jain et al. 2010). A benefit of game theory is that it al-
lows security agencies to reason about the interactions be-
tween players (i.e., the security agency and their adversaries)
and decide their optimal security policy. In fact, a number
of real-world systems use game-theoretic approaches at the
heart of their decision making processes including ARMOR,
IRIS, and GUARDS which provide assistance for resource
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allocation decisions at Los Angeles International Airport,
for the Federal Air Marshals Service, and for the Transporta-
tion Security Administration respectively (Jain et al. 2010;
Pita et al. 2011). One possible complication of this ap-
proach is that these systems use the standard game theoretic
assumptions. Specifically, the existing algorithms for these
systems find the optimal security policy under the strict as-
sumption that all players are perfectly rational and that the
followers (i.e., adversaries) perfectly observe the leader’s
policy. In the real-world such strong assumptions rarely hold
when dealing with human players.

It is well known that standard game-theoretic assumptions
of perfect rationality are not ideal for predicting the behavior
of humans in strategic decision problems (Camerer 2003).
A large variety of alternative models have been proposed in
behavioral game theory and cognitive psychology to attempt
to capture some of the deviations of human decisions from
perfect rationality. Recently, attempts have been made to try
and integrate some of these more realistic models of human
behavior into the computational analysis of security resource
allocation problems (Pita et al. 2010; Yang et al. 2011). The
goal of this type of research is to improve the decisions of
resource allocation tools such as ARMOR to aid security
agencies in dealing with human opponents.

While there are a number of potential challenges to ad-
dress in dealing with human decision makers, our work will
focus on addressing human deviation due to one of these
challenges. Specifically, we will focus on human deviations
due to limited observation conditions. To investigate these
deviations we examine a security setting based on Los An-
geles International Airport (LAX) proposed by Pita et al.
(Pita et al. 2010) and later extended by Yang et al. (Yang
et al. 2011). Given that the objective of this study is to
address non-optimal and uncertain human responses, tradi-
tional proofs of correctness or optimality are insufficient: it
is necessary to experimentally test our models.

We investigate two of the leading behavioral game-
theoretic models for security resource allocation problems
(Yang et al. 2011) under limited observation conditions. Pre-
vious work has shown that under perfect observation condi-
tions a strategy known as BRQR (Best Response to Quan-
tal Response) performs the best experimentally against hu-
mans. However, under limited observation conditions, hu-
mans may have an anchoring bias which may cause them to
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deviate from the utility maximizing strategy in a particular
way. We extend the previous work in three ways: (i) we
incorporate an anchoring bias into BRQR to improve per-
formance under limited observation; (ii) we explore find-
ing appropriate parameter settings for BRQR under limited
observation; (iii) we compare BRQR’s performance versus
COBRA under limited observation conditions, showing that
BRQR is still potentially the superior method for dealing
with human adversaries even under limited observation con-
ditions.

Background

Stackelberg Security Game

Stackelberg games have been shown to be a natural model
for analyzing real-world security resource allocation prob-
lems (Jain et al. 2010). In a Stackelberg game, one player,
the leader, commits to a strategy publicly before the remain-
ing players, the followers, make their decision. In a security
game there are two agents – the defender (security agency)
and an attacker – who act as the leader and the follower in
a Stackelberg game. The defender has K resources to pro-
tect a set of targets, ti ∈ T , which have a unique reward and
penalty to both the defender and attacker. Thus, some targets
may be more valuable to the defender than others. Once
a resource is allocated to a target it is marked as covered,
otherwise it is marked as uncovered. If the attacker attacks
an uncovered target he gets his reward and the defender her
corresponding penalty else vice versa. The defender’s goal
is to maximize her reward given that the attacker will attack
with knowledge of the defensive strategy the defender has
chosen. For example, in an airport there may be eight termi-
nals serving passengers, but only four bomb sniffing canine
units to patrol the terminals. In this scenario, the canine units
must decide on a patrolling strategy over these eight termi-
nals first, while their adversaries are able to conduct surveil-
lance and act taking this committed strategy into account.
In such security settings the optimal Stackelberg solutions,
based on a perfectly rational adversary, are typically mixed
strategies (i.e., a randomized patrolling strategy).

There exist a number of algorithms and techniques for op-
timally solving security games given the standard Stackel-
berg assumptions (Jain et al. 2010; Pita et al. 2011). In this
paper we use DOBSS (Paruchuri et al. 2008) as the base-
line algorithm for determining the optimal security policy
assuming a utility maximizing perfectly rational adversary.

Anchoring Bias

Support theory is a theory of subjective probability (Tversky
and Koehler 1994) and has been used to introduce anchor-
ing biases (See, Fox, and Rottenstreich 2006). An anchoring
bias is when, given no information about the occurrence of
a discrete set of events, humans will tend to assign an equal
weight to the occurrence of each event (a uniform distribu-
tion). This is also referred to as giving full support to the
ignorance prior (See, Fox, and Rottenstreich 2006). It has
been shown through extensive experimentation that humans
are particularly susceptible to giving full support to the igno-
rance prior before they are given any information and that,

once given information, they are slow to update away from
this assumption (See, Fox, and Rottenstreich 2006).

Models have been proposed to address this bias and pre-
dict what probability a human will assign to a particular
event x from a set of events X based on the evaluative as-
sessment (i.e., assessment based on events actually viewed)
they have made for the occurrence of that event. We uti-
lize a model where it is assumed the estimated probabil-
ities are directly calculated using a simple linear model:
P (x′) = α(1/|X|) + (1 − α)P (x). Here, α represents the
bias humans will have toward the ignorance prior. The more
information a human is given to assess, the less bias they will
have toward the ignorance prior (i.e., the smaller the value
of α). Although this is not the only possible model for deter-
mining anchoring bias, it is ideal since the odds form model
(Fox and Rottenstreich 2003) is not easily representable in
an Mixed Integer Linear Program (MILP).

Behavioral Models

In order to examine the benefits of an anchoring bias we will
examine two existing behavioral game-theoretic approaches.
To the best of our knowledge there have only been three
proposed behavioral game-theoretic approaches for dealing
with human adversaries in this particular resource alloca-
tion problem known as security games (Pita et al. 2010;
Yang et al. 2011; Yin et al. 2010). Other work has examined
the impact of limited observation in security domains such
as patrolling (Agmon et al. 2009). At this time we briefly
introduce the two approaches we examine in this study1.

COBRA

The COBRA (Combined Observability and Bounded Ratio-
nality Assumption) algorithm was developed to account for
human deviations based on bounded rationality and obser-
vational uncertainty (Pita et al. 2010). Here, COBRA as-
sumes a boundedly rational human follower is willing to
choose any ε-optimal response strategy, i.e., the follower
may choose any of the responses within ε-utility of the op-
timal utility strategy. Thus COBRA takes a robust approach
and attempts to maximize the minimum utility the leader ob-
tains for any ε-optimal response strategy by the follower. To
account for observational uncertainty, COBRA uses the lin-
ear model explained previously. Specifically, COBRA sets
a parameter α ∈ [0 . . . 1] that determines the human’s bias
toward the ignorance prior. This value is set based on the
number of observations the human follower is expected to
take before making his decision. If the human has no infor-
mation (i.e., no observations) then α = 1 and the follower
is expected to be guided entirely by their belief in the ig-
norance prior. The value of α decreases as the number of
observations the human is expected to take increases until
α = 0 when the human perfectly observes the leader strat-
egy. The MILP for COBRA is as follows:

1We chose to omit the third approach as it has been shown to be
outperformed by BRQR in the perfect observation condition.
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max
x,q,h,a,γ

γ

s.t.
∑

i∈X

xi = 1 (1)

∑

j∈Q

qj ≥ 1 (2)

∑

j∈Q

hj = 1 (3)

0 ≤ (a−
∑

i∈X

Cij ∗ x′
i) ≤ (1− hj)M (4)

ε(1− qj) ≤ a−
∑

i∈X

Cij ∗ x′
i ≤ ε+ (1− qj)M (5)

M(1− qj) +
∑

i∈X

Rijxi ≥ γ (6)

hj ≤ qj (7)
xi ∈ [0 . . . 1] (8)
qj , hj ∈ {0, 1} (9)
a ∈ � (10)

x′
i = (1/|X|) ∗ (α) + (1− α) ∗ xi (11)

Here, the index sets of leader and follower pure strategies
are denoted by X and Q respectively. The leader’s mixed
strategy is denoted by x, a probability distribution over the
vector of the leader’s pure strategies. The value xi is the
proportion of times in which pure strategy i ∈ X is used
in the strategy. The payoff matrices of the leader and the
follower are indexed by the matrices R and C respectively
where Rij and Cij represent the reward to the leader and
follower if the leader takes action i and the follower action
j. The variable hj is used to identify the optimal strategy
for the follower with a value of a in the third and fourth
constraints. The variable q represents all ε-optimal strate-
gies for the follower; the second constraint allows for one or
more strategies for the follower. The fifth constraint ensures
that qj = 1 for every action j such that a−∑

i∈X Cij ≤ ε,
since in this case the middle term in the inequality is less
than ε and the left inequality is then only satisfied if qj = 1.
The sixth constraint helps define the objective value against
the follower, γ, which must be lower than any leader reward
for all actions qj = 1. Since the objective is to maximize
γ, forcing γ to the minimum leader reward of all ε-optimal
actions allows COBRA to robustly guard against the worst
case scenario over all ε-optimal actions.

BRQR

Yang et al. (Yang et al. 2011) presented an efficient model
for computing a strategy based on Quantal Response Equi-
librium (QRE) for security games. QRE suggests that
instead of strictly maximizing utility, individuals respond
stochastically in games: the chance of selecting non-optimal
strategies increases as the cost of such an error decreases.
In applying the QRE model to security games Yang et al.
(Yang et al. 2011) only add noise to the response function for
the adversary, so the defender computes an optimal strategy

assuming the attacker responds with a noisy best-response.
The parameter λ represents the amount of noise in the at-
tacker’s response. Given λ and the defender’s mixed strat-
egy x, the adversary’s quantal response qi (i.e., probability
of taking action i) can be written as:

qi =
eλU

a
i (x)∑n

j=1 e
λUa

j (x)
(12)

where, Ua
i (x) = xiP

a
i + (1 − xi)R

a
i is the adversary’s ex-

pected utility for attacking ti ∈ T and x is the defender’s
strategy.

qi =
eλR

a
i e−λ(Ra

i −Pa
i )xi∑n

j=1 e
λRa

j e−λ(Ra
j−Pa

j )xj
(13)

The goal is to maximize the defender’s expected utility given
qi, i.e.,

∑n
i=1 qi(xiR

d
i +(1−xi)P

d
i ). Combined with Equa-

tion (13), the problem of finding the optimal mixed strategy
for the defender can be formulated as

max
x

qi((R
d
i − P d

i )xi + P d
i ) (14)

s.t.
n∑

i=1

xi ≤ K (15)

0 ≤ xi ≤ 1, ∀i, j (16)

Given that the objective function in Equation 14 is non-
linear and non-convex in its most general form, Yang et al.
(Yang et al. 2011) chose to focus on methods to find local
optima. To compute an approximately optimal QRE strat-
egy they develop the Best Response to Quantal Response
(BRQR) heuristic described in Algorithm 1. They first take
the negative of Equation 14, converting the maximization
problem to a minimization problem. In each iteration, they
find the local minimum2 using a gradient descent technique
from the given starting point. If there are multiple local min-
ima, by randomly setting the starting point in each iteration,
the algorithm will reach different local minima with a non-
zero probability. By increasing the iteration number, IterN ,
the probability of reaching the global minimum increases.

Algorithm 1 BRQR
1: optg ← −∞; {Initialize the global optimum}
2: for i← 1, ..., IterN do
3: x0 ← randomly generate a feasible starting point
4: (optl, x

∗)← FindLocalMinimum(x0)
5: if optg > optl then
6: optg ← optl, xopt ← x∗
7: end if
8: end for
9: return optg, xopt

Parameter Estimation: The λ-parameter in BRQR rep-
resents the amount of noise in the best-response function of
the attacker. One extreme case is λ = 0, which represents
uniformly random play on behalf of the attacker. The other
extreme is λ =∞, when the attacker’s response is identical

2They use fmincon in Matlab to find the local minimum.

59



to the game-theoretic optimal response. The λ-parameter is
sensitive to the game payoff structure, so tuning λ is a cru-
cial step in applying the QRE model. Yang et al. (Yang et
al. 2011) proposed using Maximum Likelihood Estimation
(MLE) to fit λ using previously gathered data. Given the
defender’s mixed strategy x and N samples of the players’
choices, the logarithm likelihood of λ is

logL(λ | x) =
N∑
j=1

log qτ(j)(λ)

where τ(j) denotes the target attacked by the player in sam-
ple j. Let Ni be the number of subjects attacking target i.
Then, we have logL(λ | x)=∑n

i=1 Ni log qi(λ). Combining
with Equation (12),

logL(λ | x) = λ
n∑

i=1

NiU
a
i (x)−N · log(

n∑
i=1

eλU
a
i (x))

It has been shown that logL(λ | x) only has one local max-
imum (Yang et al. 2011). One potential difficulty with this
approach is that data may be difficult to gather in real-world
security settings. However, it may be a reasonable estimate
to collect sample data from subjects in experimental settings
based on these real-world domains.

Anchoring Bias for BRQR

While COBRA already accounts for an anchoring bias, we
will need to modify the formulation of BRQR in order to rea-
son about an anchoring bias. We will refer to this new for-
mulation as BRQRA. In order to extend BRQRA to handle
an anchoring bias we will need to alter the way the adversary
perceives his reward. Specifically, instead of basing his de-
cisions on the strategy x he will now base his decisions on
the strategy x′. As in COBRA, x′ is determined using the
linear model presented previously for anchoring bias. We
point out that if α = 0 BRQRA becomes identical to BRQR
and so BRQRA is applicable for all observation conditions.
The adversary’s quantal response can now be written as:

q∗i =
eλU

a
i (x′)∑n

j=1 e
λUa

j (x′) (17)

where, Ua
i (x

′) = (α/|X|+(1−α)∗xi)P
a
i +(1−(α/|X|+

(1− α)xi))R
a
i is the adversary’s expected utility according

to his anchoring bias for attacking ti ∈ T and x is the de-
fender’s strategy.

q∗i =
eλR

a
i e

λα
|X| (P

a
i −Ra

i )eλ(P
a
i −Ra

i )xieλα(R
a
i −Pa

i )xi∑n
j=1 e

λRa
i e

λα
|X| (P

a
i −Ra

i )eλ(P
a
i −Ra

i )xjeλα(R
a
i −Pa

i )xj

(18)
The goal again is to maximize the defender’s expected utility
given q∗i , i.e.,

∑n
i=1 q

∗
i (xiR

d
i + (1− xi)P

d
i ). As in BRQR,

the problem of finding the optimal mixed strategy for the de-
fender can be formulated as in Equations 14∼16, however,
we replace qi with q∗i

3.

3As before we use the same heuristic described in Algorithm 1.

Experiments
In order to evaluate the benefit of including an anchoring
bias we conduct an empirical evaluation of the presented
algorithms with human subjects playing an online game.
There are two goals we seek to address with our analy-
sis. Our first goal is to see if including an anchoring bias
will potentially increase the performance (expected utility)
of BRQRA over BRQR. If we are able to show an increase
in performance it will strengthen the case that humans have
an anchoring bias under low observation and that account-
ing for such biases is important when addressing humans
in game-theoretic settings. Second, we want to compare
BRQR/BRQRA against COBRA to see if BRQR remains
a superior model for addressing human behavior in such se-
curity settings, even under low observation conditions. To
that end, we use the same model presented by Yang et al.
(Yang et al. 2011) when they initially tested BRQR against
other behavioral models in security settings. Specifically,
this model is based on Los Angeles International Airport
(LAX), which has eight terminals that can be targeted in an
attack (Pita et al. 2008). Subjects play the role of an attacker
and are able to observe the defender’s mixed strategy (i.e.,
randomized allocation of security resources) before making
a decision about which gate to attack.

Experimental Setup

Given the eight terminal scenario determined by Yang et al.
(Yang et al. 2011), our experimental domain has three guards
– jointly acting as the leader – guarding eight gates, and each
individual human subject acts as a single adversary. Each of
the eight gates has a unique reward and penalty associated
with it for both the subjects as well as the guards – a non
zero-sum game. In each game instance, the subject’s goal
is to choose the gate that will maximize his expected utility
given the defender’s strategy. If the subject chose a door that
was guarded he would receive his penalty for that gate and
the guard her reward for that gate, else vice-versa. A key dif-
ference between our experiments and those run by Yang et
al. (Yang et al. 2011) is that subjects are no longer provided
with the defender strategy in advance. Instead, subjects are
given only five observations of the defender strategy to try
and infer what that strategy is. This is because under perfect
observation conditions humans should not be influenced by
their anchoring bias. The game interface subjects were pre-
sented with can be seen in Figure 1.

For these experiments we use the four new reward struc-
tures presented by Yang et al. (Yang et al. 2011), which were
chosen to be representative of the payoff structure space. We
omit the specific details, however, these four payoff struc-
tures were chosen from a sample of 1000 randomly gener-
ated payoff structures. These 1000 payoff structures were
classified based on eight features into four clusters and each
of the four payoff structures represents one of the clusters.

As seen in Figure 1, the five observations the subjects re-
ceived were presented to them as a set of 5 triplets. That
is, a single observations is seen as [x,y,z] where the letters
(i.e., x, y, and z) correspond to the gates that were guarded
in that particular observation. Subjects are given an unlim-
ited amount of time to study both the reward structure and
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Figure 1: Game Interface

the observations they have been presented before making a
decision on which gate to attack.

In order to motivate the subjects, they would earn or lose
money based on whether or not they were successful in at-
tacking a gate. Subjects started with an endowment of 8 dol-
lars and for each reward point they earned they received an
additional 10 cents. For example, examining Figure 1 if the
subject chose gate 2 and was successful (i.e., there was no
guard) he would receive 70 cents. Similarly, for each penalty
point they lost they would lose an additional 10 cents. Re-
gardless of how many points the subject lost they were guar-
anteed to be paid at least 5 dollars. There was no limit placed
on the maximum amount of money a subject could earn.

Given this experimental setup we ran two separate experi-
ments. The first set of experiments was performed to collect
initial data for the four reward structures under low obser-
vation conditions and also to compare the performance of
BRQR/BRQRA and COBRA against DOBSS. We then used
this initial set of data to better estimate both the α and λ pa-
rameters to see if BRQR/BRQRA would indeed outperform
COBRA under low observation.

First Experiment

In the first experiment, for each payoff structure we tested
the mixed strategies generated by four algorithms: DOBSS,
COBRA, BRQR, and BRQRA. For both the λ-parameter
and the ε-parameter we used the parameter settings given by
Yang et al. (Yang et al. 2011). The α-parameter should be
set according to the number of observations the adversary is
expected to take. For the α-parameter we explored two set-
tings with α = .50 and α = .75. Since we are examining
a low observability condition we would expect there to be
a strong anchoring bias. However, since it is costly to run
too many experiments we chose to explore a half anchoring
bias and three quarters anchoring bias. Of course α = 1 is
too extreme in this case since it often leads to a deterministic
defender strategy (i.e., the defender guards the top 3 doors
since the attacker believes the defender is choosing doors
uniformly at random).

There were a total of 24 payoff structure/strategy com-
binations and each subject played all 24 combinations. To
mitigate the order effect on subject responses, a total of 24
different orderings of the 24 combinations were generated

using Latin Square design. Every ordering contained each of
the 24 combinations exactly once, and each combination ap-
peared exactly once in each of the 24 positions across all 24
orderings. The order played by each subject was drawn uni-
formly at random from the 24 possible orderings. In an at-
tempt to keep each subject’s strategy consistent, no feedback
was given for all 24 games until the end of the experiment.
A total of 33 human subjects played in this experiment.

Results: In order to evaluate the performance of each al-
gorithm and parameter setting we computed the expected
leader reward for each follower, i.e., for each choice of gate
by subject. We then found the average expected reward for a
given algorithm using the actual gate selections from the 33
subject trials. Figure 2 (a) shows the average expected leader
reward for our first reward structure, with each data-point
averaged over 33 human responses. Figures 2 (b-d) show
the same for the second, third, and fourth reward structures.
In all figures, the y-axis shows the average expected reward
each strategy obtained and the number next to any strategy
represents the α-parameter setting. For example, examin-
ing Figure 2(b) BRQRA 75 (α = .75) obtains an average
expected reward of 1.59 and DOBSS obtains an average ex-
pected reward of 1.70.

(a) Reward Structure 1 (b) Reward Structure 2

(c) Reward Structure 3 (d) Reward Structure 4

Figure 2: Average Expected Utility of Defender

Analysis: The key result of this first experiment is that
DOBSS is outperformed by at least one setting of COBRA
in each reward structure. While the results were not statis-
tically significant, these trends continue to suggest the im-
portance of addressing human adversaries in game-theoretic
settings. In fact, it has been shown in 4 different reward
structures under the same experimental setting (i.e., 5 obser-
vations) that COBRA statistically significantly outperforms
DOBSS (Pita et al. 2010).

Given these results, we need to determine appropriate λ
and α settings for both BRQR/BRQRA and COBRA. In or-
der to make a fair comparison of the two algorithms we will
need to explore a wider range of α-settings to find the best
performance for each algorithm in each reward structure. In
our second experiment we will also explore one possible
method for appropriately determining α for BRQR.
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Second Experiment

For this experiment, for each payoff structure we only tested
mixed strategies generated by COBRA and BRQR/BRQRA.
Once again for the ε-parameter we used the parameter set-
tings given by Yang et al. (Yang et al. 2011). The ε-setting
should not be affected by the observation condition. We
used the procedure given by Yang et al. (Yang et al. 2011)
based on Maximum Likelihood Estimation (MLE), which
we described previously, to estimate the λ-setting based on
the data from our first experiment and the current choice of
α. Specifically, the λ-setting is determined as the average
Maximum Likelihood Estimation (MLE) over all four re-
ward structures and all strategies tested. However, because
we are assuming the subject bases his utility on his anchor-
ing bias (i.e., Ua

i (x
′) = (α/|X| + (1 − α) ∗ xi)P

a
i + (1 −

(α/|X|+(1−α)xi))R
a
i ) it is necessary to compute the MLE

for each α-setting. This is a modification from the standard
procedure which depends on Ua

i (x). We present the MLE
of λ for each setting of α used in this experiment in Table 1

α = 0 α = .10 α = .15 α = .20 α = .25
λ .12 .16 .18 .20 .22

α = .30 α = .40 α = .50 α = .55 α = .60
λ .24 .25 .25 .24 .23

α = .65 α = .75 α = .85
λ .21 .18 .15

Table 1: MLE Estimates of λ

For the α-settings we tried to explore a wide range for
both COBRA and BRQRA. In total for each reward structure
we chose 5 new settings of α for COBRA and BRQRA along
with the 3 original settings for BRQRA given the new λ-
settings (i.e., BRQR or α = 0, α = .50, and α = .75). This
lead to a total of 13 strategies for each reward structure. For
both algorithms, we chose α-settings that lead to the largest
range of resulting mixed strategies to get the best idea of
overall performance. We also attempted to find an optimal
α-setting using an MLE method similar to that previously
described for the λ-parameter. Given the defender’s mixed
strategy x and N samples of the subjects’ choices, the log-
arithm likelihood of α is logL(α | x)=∑n

i=1 Ni log qi(α).
Here, we set qi(α) as follows:

qi =

{
1 for Ua

i (x
′) ≥ maxj∈Q(U

a
j (x

′))− ε

1e− 20 for Ua
i (x

′) < maxj∈Q(U
a
j (x

′))− ε
For the ε-parameter we use the setting used for COBRA

in each reward structure. As with the λ-parameter we found
the average MLE α-setting based on the results over all four
reward structures and all strategies. The MLE of α is 0.55
for the data used from the first experiment.

Given that each reward structure had 13 new strategies
there were a total of 52 payoff structure/strategy combina-
tions. To alleviate the time it would take a subject to finish
the experiment we decided to separate the reward structures
into two groups. The first group was reward structures 1
and 2 while the second group was reward structures 3 and
4. Thus, each subject played 26 combinations and were as-
signed to either group 1 or group 2. As before, the 26 order-
ings were generated using Latin Square design. A total of 19

human subjects played the game for the first group and 18
human subjects played the game for the second group. No
subject was allowed to play both groups.

Results: As before we computed the expected leader re-
ward for each follower and then averaged the expected re-
ward for a given algorithm from the 19/18 subject trials.
For each reward structure we have results for 13 strategies
in total (5 settings of COBRA, 7 settings of BRQRA, and
BRQR). In Figure 3 we will only present results compar-
ing the top three performing settings for both COBRA and
BRQRA as well as BRQR4. Figure 3(a) shows the average
expected leader reward for our first reward structure, with
each data-point averaged over 19 human responses. Figures
3(b-d) show the same for the second, third, and fourth re-
ward structures. In all figures, the y-axis shows the aver-
age expected reward each strategy obtained and the number
next to any strategy represents the α-parameter setting. For
BRQRA the λ-parameter setting is determined based on Ta-
ble 1 and the α-parameter setting. For example, in reward
structure 1 for BRQRA 40 we set λ = .25.

Analysis: Based on the results of this experiment there
are four main conclusions: (i) incorporating an anchor-
ing bias can help improve performance; (ii) our heuris-
tic method for estimating α using an MLE method was a
good estimation for BRQRA; (iii) appropriately estimating
both the λ and α parameters enhances the performance of
BRQR/BRQRA; (iv) BRQR/BRQRA stands as the leading
contender for use in security domains to schedule limited
security resources against human adversaries. While these
results are not statistically significant, they are a first step to-
ward appropriately addressing human adversaries in limited
observation conditions. We will now more closely examine
each of these conclusions.

First, in all four reward structures BRQRA obtained a
higher expected utility than BRQR. This is an indication
that accounting for human anchoring biases can be valuable
and that extending game-theoretic models to address spe-
cific human factors, such as anchoring biases, can lead to an
improvement in performance.

Second, in all four reward structures BRQRA’s perfor-
mance was maximized approximately around the MLE of
α, which was determined from the data in the first experi-
ment. Since BRQRA is a new model there did not exist any
method for determining an optimal α-setting under limited
observation conditions. Given that no method existed, this
is indeed a promising result. We will need to further test this
method to see if it continues to be good for determining α in
different security settings under different conditions.

Third, in reward structures 1-3 at least 1 setting of
BRQRA obtained a higher expected utility than all settings
of BRQR/BRQRA in the first experiment. This demon-
strates the benefit of appropriately adjusting both λ and α
in combination to ensure the best results. In fact, in reward
structure 2 BRQRA with α = .50 performed the best in
this experiment while in the first experiment BRQR outper-
formed BRQRA with α = .50. Furthermore, BRQR itself

4To see the full list of results please refer to
http://teamcore.usc.edu/pita/results.html
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(a) Reward Structure 1 (b) Reward Structure 2

(c) Reward Structure 3 (d) Reward Structure 4

Figure 3: Average Expected Utility of Defender

did not perform better in the second experiment than in the
first experiment for some of the reward structures. These two
examples show how appropriately adjusting both parameters
in combination is important. We also point out that these
results show that a poor choice of α can lead to decreased
performance against BRQR.

Finally, in reward structures 1-3 BRQRA is now seen out-
performing COBRA, even when compared against the re-
sults from the first experiment. This is an important result
as it follows on the results found by Yang et al. (Yang et al.
2011) showing that a strategy based on QRE can lead to im-
proved results against human adversaries. Given these three
results, BRQRA currently stands as the leading contender
for use in security domains to schedule limited security re-
sources against human adversaries. The only reward struc-
ture where the last two results fail to hold is reward structure
4, which we will more closely examine in order to explain
this degradation in performance.

Analysis of Reward Structure 4: To guide this analysis
we present reward structure 4 and the strategies generated
by BRQR in both experiment 1 and experiment 2 in Table 2.
Here, the letters D and A represent the defender and attacker
respectively (i.e., D. Reward is the defender’s reward). For
the mixed strategies generated by BRQR, we present the
probability that a guard will protect each of the gates. For
example, the strategy generated by BRQR 76 (i.e., BRQR
with λ = .76) protects gate 2 with a guard 33% of the time.

Given the data presented in Table 2 we can begin to
see why BRQR performed so poorly in reward structure 4.
Specifically, one of the major problems with the strategy
generated by BRQR 12 is its protection of gate 4. Notice
that on gate 4 the adversary obtains a reward of 9 points.
While his penalty is also high, the expectation on this door
is 6.42 for the adversary against BRQR 12. For BRQR 76
on the other hand, the expectation for the adversary is only

Gate: 1 2 3 4 5 6 7 8

D. Reward 5 9 10 2 10 4 8 8
D. Penalty -10 -4 -9 -3 -10 -10 -2 -5
A. Reward 3 7 3 9 2 9 7 8
A. Penalty -4 -8 -5 -8 -9 -4 -1 -6

BRQR(λ = .76) .35 .33 .30 .44 .20 .62 .36 .42
BRQR(λ = .12) .47 .29 .48 .15 .39 .62 .23 .37

Table 2: BRQR in reward structure 4

1.54. More importantly, the defender’s expectation is -2.24
in BRQR 12 versus -.807 in BRQR 76. Out of the 18 peo-
ple who played against BRQR 12, exactly half (9 people)
chose gate 4. It is clear that with such a low λ-setting,
BRQR’s resulting strategy leaves a significant weakness to
be exploited. In fact, given the mixed strategy produced by
BRQR 12, gate 4 has the highest expectation for the adver-
sary and thus is the rational choice. This shows how a poor
choice of λ can lead to significant consequences. In addi-
tion, increasing the value of α in the case of BRQRA only
enhances this weakness further.

The analysis of BRQR 76 versus BRQR 12 demonstrates
why BRQR performed poorly in experiment 2, however, we
still need to examine BRQR versus COBRA. Between the 2
experiments, the highest average expected reward COBRA
obtained was .42 and the highest BRQR/BRQRA obtained
was .38. In both cases, the reason the algorithms performed
well is they exploited the value of gate 7. Here the reward
for both the attacker and defender was relatively high and
the penalty was relatively low. In the case of BRQRA 50
(BRQRA with α = .50 in experiment 1) this gate had the
highest expected utility at 3.2208 for the attacker, but still
gave the defender an expected utility of 2.724. Similarly for
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COBRA 30 (COBRA with α = .30) gate 7 had the highest
expected utility at 3.728, but still gave the defender an ex-
pected utility of 2.09. While there is no definite winner be-
tween these strategies, this shows how these strategies can
also exploit strengths in the payoff structures as opposed to
the vulnerabilities left by BRQR in the second experiment.

Summary

While game-theoretic approaches have seen use in real-
world security settings, there still remains an open issue of
how to address human adversaries in these settings. Hu-
mans may not always respond with the utility maximizing
rational strategy and so it is crucial to accommodate for
these likely deviations. Particularly since deviating from the
game-theoretic optimal strategy can lead to negative results
for the defender. To that end, a number of models have been
proposed to attempt to account for these deviations.

In this work we examine two models in particular, CO-
BRA and BRQR, that were proposed specifically for secu-
rity domains that can be modeled using a Stackelberg Secu-
rity Game framework. BRQR has been shown to be the lead-
ing contender for addressing human adversaries under per-
fect observation conditions. However, we were interested in
examining how these models would perform under limited
observation conditions. Due to human anchoring biases un-
der limited observation conditions, our expectation was for
BRQR’s performance to degrade.

Our work makes three important contributions: (i) we in-
corporate an anchoring bias into BRQR to improve its per-
formance under limited observation; (ii) we explore find-
ing appropriate parameter settings for BRQR under limited
observation; (iii) we compare BRQR’s performance versus
COBRA under limited observation conditions. Given our
results we arrived at three key conclusions. First, account-
ing for human adversaries and the likely deviations they will
make from the optimal strategy can lead to performance in-
creases for resource allocation in security domains. In our
first experiment we show that DOBSS, which assumes a per-
fectly rational adversary, is always outperformed by an al-
gorithm that accounts for human adversaries. Second, we
have shown that extending BRQR to account for an anchor-
ing bias did lead to improved performance. This shows the
potential benefits of analyzing and addressing specific types
of deviations that may occur. However, there is still signifi-
cant work to be done since we have also shown that making
a poor choice in either the model or parameter settings can
lead to significant weaknesses that can easily be exploited.
Finally, BRQR remains one of the leading contenders for
addressing resource allocation against human adversaries,
however, creating a robust model for guarding against hu-
man adversaries remains an open challenge. Indeed, we
have examined only one type of potential deviation using
only one method based on support theory. There are possibly
better alternatives for addressing human biases due to lim-
ited observation conditions and there are a number of other
human factors that could be addressed in a robust algorithm.
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2010. Robust solution to stackelberg games: Addressing
bounded rationality and limited observations in human cog-
nition. AIJ 174(15):1142–1171.
Pita, J.; Tambe, M.; Kiekintveld, C.; Cullen, S.; and Steiger-
wald, E. 2011. GUARDS - game theoretic security alloca-
tion on a national scale. In AAMAS.
See, K. E.; Fox, C. R.; and Rottenstreich, Y. S. 2006. Be-
tween ignorance and truth: Partition dependence and learn-
ing in judgment under uncertainty. Journal of Experimental
Psychology: Learning, Memory, and Cognition 32:1385–
1402.
Tversky, A., and Koehler, D. J. 1994. Support thoery: A
nonextensional representation of subjective probability. Psy-
chological Review 101:547–567.
Yang, R.; Kiekintveld, C.; Ordóñez, F.; Tambe, M.; and
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