
 

 
 

Position Paper: Embracing Heterogeneity— 
Improving Energy Efficiency for Interactive Services 

 on Heterogeneous Data Center Hardware 
 

Yuxiong He  and  Sameh Elnikety 
Microsoft Research 

 
 
 
 

Abstract 
Data centers today are heterogeneous: they have servers 
from multiple generations and multiple vendors; server ma-
chines have multiple cores that are capable of running at dif-
ference speeds, and some have general purpose graphics 
processing units (GPGPU). Hardware trends indicate that 
future processors will have heterogeneous cores with differ-
ent speeds and capabilities. This environment enables new 
advances in power saving and application optimization. It 
also poses new challenges, as current systems software is 
ill-suited for heterogeneity. 
In this position paper, we focus on interactive applications 
and outline some of the techniques to embrace heterogenei-
ty. We show that heterogeneity can be exploited to deliver 
interactive services in an energy-efficient manner. For ex-
ample, our initial study suggests that neither high-end nor 
low-end servers alone are very effective in servicing a real-
istic workload, which typically has requests with varying 
service demands. High-end servers achieve good throughput 
but the energy costs are high. Low-end servers are energy-
efficient for short requests, but they may not be able to serve 
long requests at the desired quality of service. In this work, 
we show that a heterogeneous system can be a better choice 
than an equivalent homogeneous system to deliver interac-
tive services in a cost-effective manner, transforming heter-
ogeneity from a resource management nightmare to an as-
set. We highlight some of the challenges and opportunities 
and the role of AI and machine learning techniques for host-
ing large interactive services in data centers. 

Introduction 
Data centers have heterogeneous hardware from multiple 
vendors. At a large scale, it is hard to keep servers homog-
enous, with the same hardware and performance character-
istics. One main source of heterogeneity is the fact that 
data centers operate several generations of servers from 
multiple vendors. Application needs, hardware innovations 
and pricing determine which batch of servers to buy. We 

also expect that in the future the degree of heterogeneity 
will increase, even going from server-level heterogeneity 
to heterogeneity within a single server system. More spe-
cifically, Hardware trends [1] suggest that future servers 
will have multiple cores running at different speeds. More-
over, reconfigurable processor hardware [2,3,4] will allow 
composing several thin cores into a fat core. 

Although there are many prior studies [4, 5, 6] on heter-
ogeneous systems, they mostly focus on batch workloads 
without time constraints. The impact of heterogeneity on 
interactive data center services with time-bounded compu-
tations and stringent SLA requirement remains largely un-
studied. This class of computation constitutes a large por-
tion of data center workloads and includes important appli-
cations, such as web search, web content serving and vid-
eo-on-demand. Interactive workloads require a substantial 
amount of computational resources and energy each year. 
In large data centers, even a few percent of improvement in 
server throughput can save millions of dollars in operating 
expenses. 

There is a debate on whether to use high-end fast servers 
or low-end energy-efficient servers to host large-scale in-
teractive services. Our initial study suggests that neither 
high-end nor low-end servers alone are very effective in 
servicing realistic workloads, which typically include re-
quests with varying service demands. On one hand, high-
end servers achieve good throughput but the energy costs 
are high. On the other hand, low-end servers are cost effec-
tive for short requests, but they may not be able to serve 
long requests at the desired quality of service. In this re-
search, we show that heterogeneity can be exploited to 
deliver interactive services in a cost-effective manner. A 
heterogeneous system can be a better choice than an equiv-
alent homogeneous system, transforming heterogeneity 
from a resource management nightmare to an asset. 

11

AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08)



Scheduling Model 
We present a scheduling model for interactive requests to 
study the impact of using heterogeneous hardware. We 
assume a set JobSet = {J1, J2, …, Jn} of n requests (or 
jobs). Each request Ji � JobSet is characterized by an arri-
val time ri, deadline di, and service demand (aka total 
work) wi. For each request Ji, a scheduling algorithm starts 
to execute the request at time si and completes it at ci, 
where si � ri and ci � di. Let pi denote the processed work 
request Ji receives during [si, ci]; pi represents the total 
amount of work done for request Ji before its deadline. 
Here a scheduler can either be preemptive or non-
preemptive depending on the implementation environment. 
A preemptive scheduler can suspend a request from one 
processor and resume it on another processor with the 
same or different speed. The value of pi is accumulated by 
adding the contribution of the processors running request 
Ji, and this relates to both the processing time and the rela-
tive speed of processors. A quality function fi: R � R maps 
the processed work pi of request Ji to a quality value gained 
by executing the request. 

The objective of the scheduler is to minimize the energy 
consumption of servicing these requests while satisfying 
the SLA requirements of the applications. For example, an 
SLA of a web search engine can specify that requests 
should be satisfied within 150 ms, and obtain an average 
response quality greater than 99.8%. 
This scheduling model is general and it can be adapted to 
match application characteristics, execution environment 
and hardware. 

Quality profile. Different applications can have quality 
functions with various properties. For example, traditional 
server components often require a request to be fully pro-
cessed by its deadline to return any result; the correspond-
ing quality profile is a step function. However, many inter-
active applications such as web search and on-demand vid-
eo server, find the best available result within a predefined 
response time. In these applications, the response quality 
improves with the increased processing time [7]. 

Scheduler types. A scheduler can be clairvoyant or non-
clairvoyant; a clairvoyant scheduler knows the service time 
of the request when it arrives. The execution environment 
may allow the scheduler to be preemptive. 
In the next section we show a simple example showing the 
benefits of a heterogeneous system, consisting of fast and 
slow servers with homogeneous cores. We use a scheduler 
which is clairvoyant and non-preemptive, and we assume 
that the request quality is proportional to its processing 
time. 

Motivating Example 
We present a simple example to show the benefits of using 
a heterogeneous system. We assume two types of servers 
and a workload from an interactive service and study the 
number of servers required under an SLA (service level 
agreement) similar to those used in Web search. 
Servers. There are two kinds of servers: fast and slow. A 
fast server has one fast core, and a slow server has 15 slow 
cores. A fast core is three times as fast as a slow core, and 
consumes 15 times more power than a slow core (power is 
between a quadratic or cubic function of speed; 15 is be-
tween 32=9=and 33=27).  The CPU power consumption of 
a fast server and a slow server are the same. Table 1 and 2 
describe their relative speed and power consumptions. 

 
 
 

Core Speed Power Consumption 

Fast core 3X 15X 

Slow core 1X 1X 

 
Table 1. Speed and power consumption of fast and slow 

cores. 
 
 
 

Machine Cores CPU Power Consumption 

Fast Server 1 fast core 15X 

Slow Server 15 slow cores 15X 

 
Table 2. Speed and CPU power consumption of fast and 

slow servers. 
 
 
 

Small request Long request 

Fast core 10 ms 40 ms 

Slow core 30 ms 120 ms 

 
Table 3. Service demands of small and long requests on 

fast and slow cores 
 
 
 

12



  

Table 4. Hardware requirement and scheduling choices  

Workload. We assume a load of 1000 requests per second. 
Among them, there are 900 short requests and 100 long 
requests, whose service demands are described in Table 3. 
The requests arrive following a Poisson distribution. 

Request Quality Profile. The deadline of each request is 
150 ms. We allow partial results: within the deadline, if the 
request is fully satisfied, the quality of the result is 1; if the 
assigned processing time of a request is p fraction of the 
total service time, the quality of the result is p. 

Target SLA. The quality requirement is 99.8%, i.e. the 
average quality of the returned results must be at least 
99.8%. 

Hardware and scheduling choices. Table 4 presents four 
configurations, A, B, C, and D, with various server choic-
es. In configurations A and B, we use homogeneous sys-
tems: Configuration A uses fast servers only and B uses 
slow servers only. In configurations C and D, we use het-
erogeneous systems by combining fast and slow servers. In 
each configuration, we show the number of servers needed 
to satisfy the SLA. Since our fast server and slow server 
have the same CPU power consumption, the number of 
total servers needed represents the energy requirement for 
different configurations. We developed a discrete-event 
simulator to model processing of requests on different con-
figurations.  In the table, the sustainable arrival rate is ob-
tained by simulation using a FIFO scheduler while meeting 
the 99.8% SLA requirement at 150 ms deadline. 

Table 4 shows that homogeneous configurations are not 
efficient. We can use either 18.5 fast servers (configuration 
A) or 22.2 slow servers (configuration B). However, if we 
use a heterogonous system by dispatching long requests to 
fast servers and short requests to slow servers, we reduce 
the number of servers to 13.5. Moreover, a more advanced 

dispatcher can send 100 short requests + 90 long requests 
to fast servers and the remainder to slow servers, reducing 
the total number of servers to 12.6. Compared to the better 
choice of a homogeneous configuration (fast servers only 
in configuration A), a heterogeneous system (configuration 
D) saves 30% of the total energy consumed by CPU. We 
conclude that heterogeneous systems open optimization 
opportunities that are not possible with equivalent homog-
enous systems. 

 
Opportunities and Challenges 

The motivating example demonstrates the benefits of using 
heterogeneous servers in a simple case where requests have 
only two different service times, however in practice, the 
variance of requests can be much larger. For example, in 
the production Bing search workload, we observe that the 
request service time distribution has a tail, where the aver-
age service time is around 15 ms but more than 10% of 
requests have service time larger than 100 ms. Similar ob-
servations have been made on many other workloads [8]. 
The large variance of request service time further increases 
the benefits of using heterogeneous systems: we can use-
fast servers to handle long requests to meet their SLA and 
use slow servers to handle a large percentage of small and 
median requests to achieve good energy efficiency. 

Although heterogeneity brings potential opportunities to 
offer cost-effective interactive services, some challenges 
come along the way: how to use heterogeneous systems 
effectively? There are many questions to answer and issues 
to resolve: 

Service Time Prediction. Request service time is an im-
portant factor to decide where to schedule a request, how-

Configuration. Sustainable 
QPS on a slow-
core 

#slow 
servers 

Sustainable 
QPS on fast 
core 

#fast 
servers 

#total 
servers 

Description 

A - - 54 18.5 18.5 fast servers only 

B 3 22.2 - - 22.2 slow servers only 

C 17 3.5 10 10 13.5 900 short requests to slow serv-
ers; 
100 long ones to fast servers 

D 15 3.6 21 9.0 12.6 800 short + 10 long requests to 
slow servers; 100 short + 90 long 
requests to fast servers 

13



ever, it is not known for some applications. Is there an ef-
fective way to predict the request service time? For exam-
ple, in web search, the service time of a query is related to 
the number of keywords, the number of matching docu-
ments, whether the index is available in memory or stored 
on hard disk. Such information is available when a query 
arrives without demanding extensive processing. It would 
be interesting to explore whether and how we can build a 
prediction model using such information by offline learn-
ing from historical data with assistance of light-weight 
online learning. 

Resource Management. To schedule requests on hetero-
geneous hardware, intuitively, it is desirable to dispatch 
long requests to fast servers, and short requests to slow 
servers, saving hardware and energy costs while meeting 
target quality of service. However, a naïve way to divide 
requests based on a threshold of service demand does not 
offer the best solution. A better allocation need to consider 
the performance of processors, request service time distri-
bution, request quality profile, load on the servers, and the 
desired SLA. This is a complex system with many parame-
ters. Machine learning techniques can be very helpful here 
to monitor the status of the complex system, extract per-
formance features, and perform adaptive resource man-
agement. In particular, developing such a resource man-
agement system is an open research question that requires 
advances in performance modeling and analysis. 

Hardware Selection. We want to investigate how to 
schedule requests both among a heterogeneous cluster with 
different homogeneous servers, and on servers with heter-
ogeneous cores. 
• If we can select only two types of servers, how will we 

choose the speed of the servers? How does this problem 
evolve with more server types? When do we get most of 
the gain with a least types of servers? 
• New technology trends allow us to dynamically adjust 

frequency and voltage of cores on a processor chip. 
How can we configure the existing hardware to the best 
operational point? 
• Reconfigurable hardware [2, 3, 4] allows composing 

several thin cores into a fat core. How can we exploit 
this flexibility to improve energy efficiency? 
Given such a large space of hardware and configurations 

to explore, we hope that search and optimization tech-
niques in AI can help us to effectively trim the search 
space and lead us to a pool of good selections. 

In summary, interactive data center services like web 
search, map search, online gaming use a substantial 
amount of computational resources and energy each year. 
These services can benefit from heterogeneity in data cen-
ters, but there is little prior work addressing this issue. 
Given the complexity of the system, machine learning and 

AI are promising techniques to optimize such systems and 
to develop an effective resource management framework. 
There are many interesting research problems to explore. 

References 
 [1] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore 
era. In IEEE Computer, pages 33–38, 2008. 
[2] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. 
Ranganathan, D. Burger, S.W. Keckler, R. G. McDonald, and C. 
R. Moore. Exploiting ILP, TLP, and DLP with the polymorphous 
TRIPS architecture. In International Symposium on Computer 
Architecture, pages 422–433, 2003. 
[3] S. Swanson, K. Michaelson, A. Schwerin, and M. Oskin. 
WaveScalar. In Symposium on Microarchitecture, pages 291–
302, 2003. 
[4] Divya Gulati, Changkyu Kim, Simha Sethumadhavan, Ste-
phen W. Keckler, Doug Burger: Multitasking workload schedul-
ing on flexible-core chip multiprocessors. In PACT 2008: 187-
196. 
[5] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, 
Norman P. Jouppi, Keith I. Farkas. Single-ISA Heterogeneous 
Multi-Core Architectures for Multithreaded Workload Perfor-
manceInternational. In Symposium on Computer Architecture, 
pages 64-75, 2004. 
[6] Kevin T. Lim, Parthasarathy Ranganathan, Jichuan Chang, 
Chandrakant D. Patel, Trevor N. Mudge, Steven K. Reinhardt. 
Understanding and Designing New Server Architectures for 
Emerging Warehouse-Computing Environments. In International 
Symposium on Computer Architecture, pages.315-326, 2008. 
[7] Yuxiong He, Sameh Elnikety, Hongyang Sun. Tians Schedul-
ing: Using Partial Processing in Best-Effort Applications. ICDCS 
2011, Minneapolis, MN, June 20-24, 2011. 
[8] Mor Harchol-Balter, "The Effect of Heavy-Tailed Job Size. 
Distributions on Computer System Design," In Proceedings of 
ASA-IMS Conference on Applications of Heavy Tailed Distribu-
tions in Economics, Engineering and Statistics, Washington, DC, 
June 1999. 

14


