Lifelong Learning: Papers from the 2011 AAAI Workshop (WS-11-15)

Lifelong Forgetting: A Critical Ingredient of Lifelong Learning, and Its
Implementation in the OpenCog Integrative AI Framework

Ben Goertzel
Novamente LLC
Fujian Province Key Lab for Brain-Like Intelligent Systems,
Dept. of Cognitive Science, Xiamen University

Your fingers weave quick minarets ... Speak in secret al-
phabets ... I light another cigarette ... Learn to forget, learn
to forget

— Jim Morrison, ”Soul Kitchen”

Of all the aspects differentiating lifelong learning from
shorter-term, more specialized learning, perhaps none is
more central than forgetting — or, to frame the issue more
generally and technically, "memory access speed deprioriti-
zation.” This extended abstract reviews some of the ideas in-
volved in forgetting for lifelong learning systems, and briefly
discusses the forgetting mechanisms used in the OpenCog
integrative cognitive architecture.

Defining Forgetting In ordinary human discourse, the
word “forget” has multiple shades of meaning. It can refer
to the irreversible elimination of a certain knowledge item
from memory; or it can mean something milder, as in cases
where someone “forgets” something, but then remembers it
shortly after. In the latter case, “forgetting” means that the
knowledge item has been stored in some portion of memory
from which access is slow and uncertain.

These various shades of meaning also have relevance
to Al systems performing lifelong learning. The advent of
larger and cheaper memory stores makes it more and more
viable for an Al system to persistently store a large per-
centage of its experiences. But nevertheless, memories with
faster access remain considerably more expensive than those
with slower access. So for example, in the case of an Al sys-
tem that stores many of its thoughts and experiences to disk
but keeps only a currently pertinent subset in RAM, the ba-
sic problem of “forgetting” still remains, taking the form of
deciding which information to keep in RAM and which to
push to the ”back of the mind” on disk.

In general one may define “forgetting” as the process of
storing different memory items in different ways associated
with dramatically different access speeds, the outright dele-
tion of items from memory being one extreme. In any life-
long learning system containing a memory store with differ-
entially rapid access, that is much too small to contain the
system’s whole experience and knowledge base, forgetting

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

60

will be a critical process.

Notwithstanding its general neglect in the Al field, forget-
ting is extremely important — basically, it’s about learning
what is likely to be most important to be able to access in
the future, with what level of access speed.

Forgetting in OpenCog Next we very briefly describe the
OCP (OCP) Artificial General Intelligence architecture, im-
plemented within the open-source OpenCog Al framework,
with a focus on those aspects most relevant to forgetting.
Other cognitive architectures that have paid particular atten-
tion to forgetting include Pei Wang’s NARS (Wang 2006),
Stan Franklin’s LIDA (Franklin 2006), and many more.

Conceptually founded on the ”patternist” systems theory
of intelligence outlined in (Goertzel 2006), OCP combines
multiple Al paradigms such as uncertain logic, computa-
tional linguistics, evolutionary program learning and con-
nectionist attention allocation in a unified architecture. Cog-
nitive processes embodying these different paradigms inter-
operate together on a common neural-symbolic knowledge
store called the Atomspace. The interaction of these pro-
cesses is designed to encourage the self-organizing emer-
gence of high-level network structures in the Atomspace,
including superposed hierarchical and heterarchical knowl-
edge networks, and a self-model network.

OpenCog has been used for commercial applications in
the area of natural language processing and data mining;
e.g. see (Goertzel et al. 2006) where OpenCog’s PLN rea-
soning and RelEx language processing are combined to do
automated biological hypothesis generation based on infor-
mation gathered from PubMed abstracts. Most relevantly to
the present proposal, has also been used to control virtual
agents in virtual worlds (Goertzel and Et Al 2008), using an
OpenCog variant called the OpenPetBrain, and humanoid
robots (Goertzel 2010). These agents demonstrate a variety
of interesting and relevant functionalities including learn-
ing new behaviors based on imitation and reinforcement; re-
sponding to natural language commands and questions, with
appropriate actions and natural language replies; and spon-
taneous exploration of their world, remembering their expe-
riences and using them to bias future learning and linguistic
interaction. In the virtual agent and physical robotics con-
texts, OpenCog is intended for lifelong learning (although
experiments so far have not run more than weeks).



Declarative knowledge representation in OpenCog is han-
dled by a weighted labeled hypergraph called the Atom-
space, which consists of multiple types of nodes and links,
generally weighted with probabilistic truth values and also
attention values (ShortTermImportance (STI) and LongTer-
mlmportance (LTI) values, regulating processor and mem-
ory use). Equations called Economic Attention Networks
(ECAN) (Goertzel et al. 2010) are used to update the STI
and LTI values dynamically, where the attention values as-
sociated with an Atom are dependent on how useful the
Atom is estimated to be for achieving the system’s future
goals (short or long term, respectively), and by STI and LTI
spreading to it along links from other Atoms, roughly simi-
larly to activation spreading in a neural network.

Forgetting in OpenCog And when OpenCog’s declara-
tive memory becomes full, how does forgetting happen? The
Atoms with the lowest LTI are removed from RAM. Atoms
also have a single bit variable called VLTI (V=very), which
determines whether, upon removal from RAM, the Atom is
saved to disk or just deleted. For instance, recently created
speculative concepts that prove useless will generally just
be deleted; whereas any Atom that has been significantly
important in the past will likely be saved to disk.

When an Atom is saved to disk, what happens to the other
Atoms in RAM that link to it? They retain a certain per-
centage of these links, which point to AtomHandles rather
than Atom objects. To follow those links is an expensive op-
eration undertaken only under special circumstances, as it
involves loading the target Atoms into RAM. How many of
these disk-directed links are retained is determined by the
LTT of the linking Atom in RAM, and a system parameter.

Interdependency of Judgments about Forgetting A
subtlety is that there are many cases where one has a large
set of memory items, so that none of the items individually is
particularly important to remember, but so that it’s important
for the memory to retain some of the memory items in rapid-
access memory rather than deleting them all or relegating
them all to slow-access memory. This means that judgments
about forgetting must be made on the level of memory net-
works.

To understand this better, consider again a system like
OpenCog that retains many memory items in RAM, but rel-
egates many more to disk. In this case, there is a major issue
of how the system knows what it has stored on disk. One
way of extracting information from the disk store is to use
named Atoms such as those corresponding to natural lan-
guage words. So if the system wants to know more about
Australia, for instance, it can search its disk store and see if it
previously stored there any Atoms linked to the ”Australia”
WordNode. Once it has imported some of these Atoms into
RAM, it can then import other Atoms linked to those, etc.
However, this is a fairly crude method, which doesn’t help
that much with recall of the system’s own novel concep-
tions (that may not be easily indexed using natural language
words or other persistent external references). Suppose a
system has learned a novel network of 1000 concepts and

61

their interrelationships, which it thinks may be useful to it in
the future, but which it feels it can’t afford to retain in RAM.
What’s its best forgetting strategy?

One solution to this issue is for the system to retain a ran-
dom (or more judiciously chosen) subsample of the 1000-
concept network in RAM. Even if no individual Atom in
the network is all that important in itself, retaining some of
the network’s Atoms in RAM is a valuable thing, as these
remaining RAM-resident Atoms can be used to bring the
other members of the network back into RAM as appropri-
ate. This phenomenon is accounted for in OpenCog via a
special formula that boosts the LTI of an Atom if is is linked
to relatively high-LTT Atoms on disk, which have few links
to other Atoms in RAM. The quantitative weighting of this
formula controls, in our example, how many of the Atoms in
the 1000-concept network will remain in RAM (depending
also on the LTI dynamics of the rest of the network).

Conclusion We have reviewed some of the general issues
involved with forgetting in lifelong learning systems, and
summarized how these issues are solved in the OpenCog
system. As OpenCog is architected quite differently than the
human brain, one expects the brain’s approach to resolving
the same problem to have many different characteristics, as
well as likely some similarities. In general, different lifelong
learning systems may handle the subtleties of forgetting dif-
ferently, but all must address the same issues, such as the in-
terdependency of judgments about forgetting; and these are
issues that are largely particular to lifelong learning systems,
not arising often in Al systems that are booted up only tem-
porarily for the solution of individual problems.

This work partially funded by Chinese NSF Grant
60975084/F030603

References

Franklin, S. 2006. The lida architecture: Adding new modes
of learning to an intelligent, autonomous, software agent.
Int. Conf. on Integrated Design and Process Technology.

Goertzel, B., and Et Al, C. P. 2008. An integrative method-
ology for teaching embodied non-linguistic agents, applied
to virtual animals in second life. In Proceedings of the First
Conference on Artificial General Intelligence. 10S Press.

Goertzel, B.; Pinto, H.; Pennachin, C.; and Goertzel, 1. F.
2006. Using dependency parsing and probabilistic infer-
ence to extract relationships between genes, proteins and
malignancies implicit among multiple biomedical research
abstracts. In Proceedings of Bio-NLP 2006.

Goertzel, B.; Pitt, J.; Ikle, M.; Pennachin, C.; and Liu, R.
2010. Glocal memory: a design principle for artificial brains
and minds. Neurocomputing, Special Issue of Artificial
Brain.

Goertzel, B. 2006. The Hidden Pattern. Brown Walker.

Goertzel, B. e. a. 2010. Opencogbot: An integrative archi-
tecture for embodied agi. Proceedings of ICAI-10, Beijing.

Wang, P. 2006. Rigid Flexibility: The Logic of Intelligence.
Springer.



