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Abstract

Attacker-defender Stackelberg games have become a popular
game-theoretic approach for security with deployments for
LAX Police, the FAMS and the TSA. Unfortunately, most of
the existing solution approaches do not model two key uncer-
tainties of the real-world: there may be noise in the defender’s
execution of the suggested mixed strategy and/or the observa-
tions made by an attacker can be noisy. In this paper, we an-
alyze a framework to model these uncertainties, and demon-
strate that previous strategies perform poorly in such uncer-
tain settings. We also analyze RECON, a novel algorithm that
computes strategies for the defender that are robust to such
uncertainties, and explore heuristics that further improve RE-
CON’s efficiency.

Introduction

The use of game-theoretic concepts has allowed security
forces to exert maximum leverage with limited resources.
Indeed, game-theoretic scheduling softwares have been as-
sisting the LAX police, the Federal Air Marshals service,
and are under consideration by the TSA (Jain et al. 2010).
They have been studied for patrolling (Agmon et al. 2008;
Basilico, Gatti, and Amigoni 2009) and routing in net-
works (Kodialam and Lakshman 2003) and urban trans-
portation networks (Tsai et al. 2010). At the backbone of
these applications are attacker-defender Stackelberg games.
The solution concept is to compute a strong Stackelberg
equilibrium (SSE) (von Stengel and Zamir 2004; Kiek-
intveld et al. 2009; Conitzer and Sandholm 2006); specifi-
cally, the optimal mixed strategy for the defender. It is then
assumed that the defender perfectly executes her SSE strat-
egy and the attacker perfectly observes the strategy before
choosing his action.

Unfortunately, in the real-world, execution and observa-
tion is not perfect due to unforeseen circumstances and/or
human errors. For example, a canine unit protecting a termi-
nal at LAX may be urgently called off to another assignment
or alternatively a new unit could become available. Simi-
larly, the attacker’s observations can be noisy: he may oc-
casionally not observe an officer patrolling a target, or mis-
take a passing car as a security patrol. Thus, in real-world
deployments, the defender may have a noisy execution and
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the attacker’s observations may be even more noisy. A naive
defender strategy can be arbitrarily bad in such uncertain
domains, and thus, it is important to develop risk-averse so-
lution techniques that can be used by deployed security sys-
tems like ARMOR and IRIS (Jain et al. 2010).

This paper models execution and observation uncertainty,
and presents efficient solution techniques to compute risk-
averse defender strategies. Previous work has failed to pro-
vide such efficient solution algorithms. While the COBRA
algorithm (Pita et al. 2010) focuses on human subjects’ in-
ference when faced with limited observations of defender
strategies, it does not consider errors in such observations.
In contrast, Yin et. al (2010) consider the limiting case
where an attacker has no observations and thus investigate
the equivalence of Stackelberg vs Nash equilibria. Even
earlier investigations have emphasized the value of com-
mitment to mixed strategies in Stackelberg games in the
presence of noise (Bagwell 1995; Huck and Mller 2000;
Morgan and Vardy 2007; van Damme and Hurkens 1997).
Alternate models where the attacker is uncertain about the
utility of a target have also been proposed (Jenelius, Westin,
and Holmgren 2010). Outside of Stackelberg games, mod-
els for execution uncertainty have been separately devel-
oped (Iyengar 2005; Archibald and Shoham 2009). Algo-
rithms that model human behavior have also been pro-
posed (Yang et al. 2011). Our research complements these
efforts by providing a unified efficient algorithm that ad-
dresses both execution and observation uncertainties; in this
way it also complements other research that addresses pay-
off uncertainties in such games (Jain et al. 2010).

Recent work by Yin et. al (2011) provides RECON, a
mixed-integer linear programming formulation that com-
putes the risk-averse strategy for the defender in domains
with execution and observation uncertainty. RECON as-
sumes that nature chooses noise to maximally reduce de-
fenders utility, and RECON maximizes against this worst
case. Yin et. al (2011) also provide two heuristics that speed
up the computation of RECON. This paper extends that work
and provides three key contributions: (1) an in-depth analy-
sis of the robust strategies provided by RECON. (2) novel
solution quality details for realistic security situations with
execution errors obtained using simulations with an attacker
who has limited observation capabilities, and (3) new and
detailed runtime results of heuristics to improve RECON’s



performance.

Background and Notation

A Stackelberg security game is a game between two play-
ers: a defender and an attacker. The defender wishes to de-
ploy up to v security resources to protect a set of targets T’
from the attacker. Each player has a set of pure strategies:
the defender can cover a set of targets, and the attacker can
attack one target. The payoffs for each player depend on the
target attacked, and whether or not the attack was success-
ful. U} (t;) and US(t;) represent the utilities for the defender
when t;, the target attacked, was uncovered and covered re-
spectively. The attacker’s utilities are denoted similarly by
US(t;) and U2 (t;). We use AUq(t;) = US(t;) — U} (t;) to
denote the difference between defender’s covered and un-
covered utilities. Similarly, AU, (t;) = UX(t;) — US(ts).
A key property of security games is that AU, (¢;) > 0 and
AU,(t;) > 0. Example payoffs for a game with five targets,
t1 and ¢5, and one resource are given in Table 1.

b1 | to | t3 | t4 | t5
Us (432809
Ur [-1[6]3]5]6
uc | -21-51-11]-7]-9
uv | 3 6 1 715

Table 1: Example Security Game with 5 targets.

A strategy profile (x,t;) for this game is a mixed strat-
egy x for the defender, and the attacked target ¢,;. The mixed
strategy x = (x;) is a vector of probabilities of defender
coverage over all targets (Yin et al. 2010), such that the
sum total of coverage is not more than the number of avail-
able resources 7. For example, a mixed strategy for the de-
fender can be .25 coverage on ¢; and .75 coverage on ts.
We allow y;, the defender’s actual coverage on t;, to vary
from the intended coverage x; by the amount «;, that is,
ly; — x| < ;. Thus, if we set &3 = 0.1, it would mean
that 0.15 < y; < 0.35. Additionally, we assume that the at-
tacker wouldn’t necessarily observe the actual implemented
mixed strategy of the defender; instead the attacker’s per-
ceived coverage for ¢;, denoted by z;, can vary by 3; from
the implemented coverage y;. Therefore, |z; — y;| < f;.
Thus, in our example, if y; was 0.3 and (57 was set to 0.05,
then 0.25 < z; < 0.35. Table 2 summarizes the notation
used in this paper.

For example, at LAX, ARMOR might generate a schedule
for two canines to patrol Terminals 1, 2, 3, 4 with probabili-
ties of 0.2, 0.8, 0.5, 0.5 respectively. However, a last-minute
cargo inspection may require a canine unit to be called away
from, say, Terminal 2 in its particular patrol, or an extra ca-
nine unit may become available by chance and get sent to
Terminal 3. Additionally, an attacker may fail to observe a
canine patrol on a terminal, or he may mistake an officer
walking across as engaged in a patrol. Since each target is
patrolled and observed independently, we assume that both
execution and observation noise are independent per target.
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Variable Definition
T Set of targets
Uj}(t;) | Defender’s payoff if target ¢; is uncovered
U§(t;) Defender’s payoff if target ¢; is covered
UX(t;) | Attacker’s payoff if target ¢; is uncovered
US(ti) Attacker’s payoff if target ¢; is covered
v Number of defender resources
T; Defender’s intended coverage of target ¢;
Yi Defender’s actual coverage of target t;
Zi Attacker’s observed coverage of target t;
AU (t:) AU (t:) = Ug(t:) — Uy (t:)

AU, (t:) AUq(t:) = Uy (t:) — Ug(ti)
D;(z;) Defender’s expected utility for target t;
A;i(z;) Attacker’s expected utility for target ¢;

Ai(x;) = Uk(t;) — AUq(t)x;
o Maximum execution error for target ¢;
B Maximum observation error for target ¢;

Table 2: Notation

Again, consider the example in Table 1, suppose the de-
fender has one resource. The SSE strategy for the defender
would be protecting ¢; and to with 0.5 probability each,
making them indifferent for the attacker. The attacker breaks
ties in defender’s favor and chooses t; to attack, giving the
defender an expected utility of 5. This SSE strategy is not
robust to any noise — by deducting an infinitesimal amount
of coverage probability from ¢, the attacker’s best response
changes to ¢, reducing the defender’s expected utility to —5.
RECON computes a risk-averse strategy, which provides the
defender the maximum worst-case expected utility. For ex-
ample, assuming no execution error and 0.1 observational
uncertainty (o« = 0 and S = 0.1), the optimal risk-averse
defender strategy is to protect ¢; with 0.4 — e probability
and to with 0.6 + € probability so that even in the worst-
case, the attacker would choose 1, giving the defender an
expected utility of 4. Finding the optimal risk-averse strat-
egy for large games remains difficult, as it is essentially a
bi-level programming problem (Bard 2006).

Problem Statement

The objective of RECON is to find the optimal risk-averse
strategy x, maximizing the worst-case defender utility,
U} (x) (Constraint (1) and (2)). Given a fixed maximum ex-
ecution and observation noise, o« and 3 respectively, U] (x)
is computed by the minimization problem from Constraint
(3) to (6).

The overall problem is a bi-level programming problem.
For a fixed defender strategy x, the second-level problem
from Constraint (3) to (6) computes the worst-case de-
fender’s executed coverage y, the attacker’s observed cov-
erage z, and the target attacked ¢;. (y, z,t;) is chosen such
that the defender’s expected utility D;(y;) (see Table 2) is
minimized, given that the attacker maximizes his believed
utility! A;(z;) (Constraint (4)). This robust optimization is

'The attacker’s believed utility is computed using the strategy



similar in spirit to Aghassi and Bertsimas (2006), although
that is in the context of simultaneous move games.

max Uj(x) (D
st Y wi<y, 0<% <1 @
t;eT
Ua(x) = min  D;(y;) )
Lot Ai(z; 4
st t; € argmax (2i) “)
—0; Sy —v<a;, 0<y; <1 (5)
—Bi<zi—yi<Bi, 0<z <1 (6)
Additionally, the above formulation also highlights the

need to separately model both execution and observation
noise. Indeed a problem with uncertainty defined as {(a, 3)
is different from a problem with ('’ = 0,8 = a + 3) (or
vice-versa), since the defender utility is different in the two
problems.

Approach

RECON, Risk-averse Execution Considering Observational
Noise, is a mixed-integer linear programming (MILP) for-
mulation that compute the risk-averse defender strategy in
the presence of execution and observation noise. It encodes
the necessary and sufficient conditions of the second-level
problem (Constraint (4)) as linear constraints. The intu-
ition behind these constraints is to identify S(x), the best-
response action set for the attacker given a strategy x, and
then break ties against the defender. Additionally, RECON
represents the variables y and z in terms of the variable x
— it reduces the bi-level optimization problem to a single-
level optimization problem. Here, we first define the term
inducible target and then the associated necessary/sufficient
conditions of the second level problem.

Definition 1. A rarget t; is weakly inducible by a mixed
strategy x if there exists a strategy z with 0 < z; < 1 and
|zi — x| < a; + B forallt; € T, such that t; is the best
response to z for the attacker; i.e., t; = arg maxy, e Ai(%;).

Additionally, Yin et. al (2011) define the upper and lower
bounds on the utility the attacker may believe to obtain for
the strategy profile (x,t;). These bounds are then used to
determine the best response set of the attacker.

Definition 2. For the strategy profile (x,t;), the upper
bound of attacker’s believed utility is given by A} (x;),
which would be reached when the attacker’s observed cov-
erage of t; reaches the lower bound max{0,x; — a; — f3; }.

Af (z;) = min{U2 (t;), Ai(z; — a; — Bi)} @)

Similarly, the lower bound of attacker’s believed utility of
attacking target t; is denoted as A; (x;), which is reached
when the attacker’s observed coverage probability on t;
reaches the upper bound min{1, z; + a; + (;}.

A7 (z;) = max{UZ(t;), Ai(x; + o + B4} ®)

observed by the attacker, and it may not be achieved, since z can
be different from y, which can be different from x.
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Lemma 1. A target t; is weakly inducible by x if and only
if Af (x;) > maxg,er A7 ().

Proof. 1f t; is weakly inducible, consider z such that ¢; =
arg maxy, er A;(2;). Since z; > max{0,z; —a; — 3, } and
forall t; # t;, z; < min{1,z; + o; + B;}, we have:

AT () = min{Uy (t;), Aj(x; — aj — 8;)} > Aj(z)
>Ai(z) > max{U;(t;), Ai(z; + a; + Bi)} = A; (x5).

On the other hand, if A;r(xj) > A7 (x;) forallt; € T, we
canlet z; = max{0, x;—a;—f3;} and z; = min{1, z;+a;+
B} for all t; # t;, which satisfies t; = arg maxy, e Ai(2;).
This implies t; is weakly inducible. O

We also define D (x;), the lower bound on the defender’s
expected utility for the strategy profile (x,¢;). This lower
bound is used to determine the defender’s worst-case ex-
pected utility.

Definition 3. For the strategy profile (x,t;), D; (x;) is
achieved when the defender’s implemented coverage on t;
reaches the lower bound max{0, x; — «; }, and is given by:

Df(xl) = max{U;(ti), D1(1'1 - CVZ)}

i )
Lemma 2. Ler S(x) be the set of all targets that are weakly
inducible by x, then Uj(x) = miny, c g(x) D; ().

Proof. The proof proceeds by showing that the defender
utility U (x) is upper bounded by miny, ¢ g(x) D; (z;) since
only the targets in S(x) are weakly inducible; we omit
the formal details since they can be found in Yin et.
al (2011). O

Lemma (1) and (2) are the necessary and sufficient con-
ditions for the second level optimization problem, reducing
the bi-level optimization problem into a single level MILP.

REcCON MILP

Now, we present the MILP formulation for RECON. It max-
imizes the defender utility, denoted as v4. v, represents the
highest lower-bound on the believed utility of the attacker
(A (;)), given in Constraint (11). The binary variable g; is
1 if the target ¢; is weakly inducible; it is 0 otherwise. Con-
straint (12) says that ¢; = 1 if AT (z;) > vq (e is a small pos-
itive constant which ensures that ¢; = 1 when A;r(xz) = V)
and together with Constraint (11), encodes Lemma 1. The
constraint that ¢; = 0 if Aj (z;) < wg could be added to
RECON, however, it is redundant since the defender wants
to set ¢; = 0 in order to maximize v4. Constraint (13) says
that the defender utility vg is less than D; (z;) for all in-
ducible targets, thereby implementing Lemma 2. Constraint
(14) ensures that the allocated resources are no more than



the number of available resources -y, maintaining feasibility.

max vy (10)
X,q,Vd,Va
st v, = glg%cAi (z;) (11)
Al (@) Sva+qiM — € (12)
vg < D (23) + (1 — ¢i)M (13)
> wi <y (14)
z; € [0,1] (15)
i €{0,1} (16)

The max function in Constraint (11) can be formulated
using |T'| binary variables, {h;}, in the following manner:

A7 () <wvg < A7 (z3)+ (1 —hy) M 17
> hi=1, h;e{0,1} (18)

t; €T

The min operation in Aj (z;) is also implemented similarly.
For example, Equation (7) can be encoded as:

Ud(t;) — (1 — )M < Af <UX(t;)
Ai(z; — i — Bi) —viM < A < Ay(w; — a; — Bi)
v; € {0, 1}

We omit the details for expanding A; (z;) and D, (z;), they
can be encoded in a similar fashion.

Analysis
Overall, RECON tends to put more protection on vulnerable
targets (those give the defender very low utilities) to make
them less likely to be attacked. COBRA does this too, how-
ever the difference is that RECON gives an optimal solution
with a given noise of attacker’s observations whereas using
a fixed € as bounded-rationality for the attacker in COBRA
is just a heuristic which may be difficult to set in practice. A
key property of RECON is that it computes the SSE where
there is no uncertainty, that is, « = 8 = 0. Furthermore,
a MAXIMIN strategy is obtained when 3 = 1 with a = 0.
In such situations, even though the defender has no execu-
tion uncertainty, the attacker can choose to attack any target
since z can be arbitrary. Additionally, &« = 1 implies that the
execution of the defender is independent of x and thus, any
feasible x is optimal. Thus, RECON provides a full range of
robust solutions of the problem by just setting noise between
0 and 1 which can be quite valuable for end users in practice.
Table 1 shows the payoff values for 5 targets in sample se-
curity game. In this sample security game, the optimal strat-
egy for the defender assuming « = 3 = 0 (i.e., no uncer-
tainty) gives the defender a payoff of —0.31 units where the
optimal action of the attacker is to attack target ¢;. In this
setting, the attack set of the attacker comprises of only the
target ¢,.> As the uncertainty increases, more targets enter
the attack set, and so the defender has to distribute her re-
sources across more targets.

2 Attack set is the set of targets that represent the attacker’s best
response; the attacker is indifferent to all targets that belong to this
set (Kiekintveld et al. 2009).
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«@ Jé] Attack Set Uj(x)
0 0 {7 —0.31
0 |0.02 {1, 4} —0.49
0.01 | 0.01 {t.} —0.55
002] 0 {t:} ~0.60
0.05 | 0.05 {t1,14} —1.70
0 T | {t1, 2,3, ta, 85} | —2.31
1 * {tl,tg,tg,t4,t5} —6.0

Table 3: RECON output for security game given in Table 1.

Table 3 shows sample results for RECON for different set-
tings for o and 3. Firstly, as expected, higher uncertainty
leads to lower defender reward (as we move down the table).
Secondly, it is harder for the defender to protect against ex-
ecution error as opposed to observation error. For example,
the defender is able to achieve a higher payoff of —0.49 units
when the observation error is 0.2 with o = 0, however, the
reward drops to —0.6 when values of o and 3 are swapped.
Finally, execution error of 1.0 implies that the defender’s
strategy is irrelevant; there is so much execution noise that
y is independent of x. Thus, in the worst case, the attacker
will succeed in attacking any single target and the defender
achieves the worst possible utility (here, worst utility for the
defender equals U} (t4) = —6). On the other hand, COBRA
with an e value (bounded rationality) of 2 units has an attack
set of targets {t1,t4} with the expected defender utility of
—1.38. This utility drops to —2.07 when the value of € is
changed to 3 with the attack set changing to {t1,t2, ¢4, t5}.
This again shows that while COBRA can generate robust so-
lutions, an over-estimate of € can lead to a significant loss in
expected defender utility.

Speeding up

As described above, RECON uses a MILP formulation to
compute the risk-averse strategy for the defender. Integer
variables increase the complexity of the linear programming
problem; indeed solving integer programs is NP-hard. MILP
solvers internally use branch-and-bound to evaluate inte-
ger assignments. Availability of good lower bounds implies
that less combinations of integer assignments (branch-and-
bound nodes) need to be evaluated. This is the intuition be-
hind speeding up the execution of RECON. We provide two
methods, a-RECON and i-RECON, to generate lower bounds.

a-RECON: a-RECON solves a restricted version of RE-

CON. This restricted version has lower number of integer

variables, and thus generates solutions faster. It replaces

Aj(xl) by A;(x; — o — ;) and D; (x;) by D;(x; — o),
thereby rewriting Constraints (12) and (13) as follows:

Ai(wi — i — Bi) Sva +qiM — € (19)

vg < Di(w; — o) + (1 — q) M (20)

a-RECON is indeed more restricted — the LHS of Constraint

(19) in a-RECON is no less than the LHS of Constraint (12)

in RECON; and the RHS of Constraint (20) is no greater

than the RHS of Constraint (13) in a-RECON. Therefore, any
solution generated by a-RECON is feasible in RECON, and



Algorithm 1: Pseudo code of i-RECON

1 k=00 =0 = —oc;

2 while v+ — o | <n and V]V
3 | {1V =Solve(A-LP (v, v%));
4 | o™ =Solve(D-LP (v, v());
5 k=k+1,

6 end

— vy’ <ndo

acts as a lower bound. We do not restrict A; (x;) since the
RHS of Constraint (17) is non-trivial for only one target.

i-RECON: i-RECON uses an iterative method to obtain
monotonically increasing lower bounds v of RECON. Us-
ing the insight that Constraint (19) is binding only when
q; = 0, and (20) when ¢; = 1, i-RECON rewrites Constraints
(19) and (20) as follows:

Ug (tm)_va +e

g > [Tealve) = SapEEE ot By ifg =0
P railvg) = Uil 4 o, ifg; =1
d,i\Ud AUg(t:) Qi Ha

which says that ¢; = 0 implies z; > 7,,;(v,) and ¢; = 1
implies z; > 74, (vq).?

Constraint (21) can also be represented as follows (Yin et
al. 2011):

x; > min{7y;(va), Ta,i(va)}

= T44(vq) + min{0, 74 ;(ve) — Ta,i(va) } (22)

Observe that 74,;(v4) is increasing in vg where as 7, ;(vg,)
is decreasing in v, (refer Constraint (21)), and hence
Ta,i(Va) — Ta,i (V) 18 increasing in both v4 and v,,. i-RECON
generates an increasing sequence of {A7/* = 7,,;(v{”) —
Ta,i(v")} by finding increasing sequences of v} and v{".
As is described in Yin et. al (2011), substituting 74 ;(vg) —
Ta,i(Va) with { A7’} in Constraint (22) guarantees correct-
ness. Since a higher value of A7{* implies a lower value of
min{0, —A7/®'}, a weaker restriction is imposed by Con-
straint (22), leading to a better lower bound v

Given v((ik) and v{", i-RECON uses D-LP to compute the
vékﬂ), and A-LP to compute vékﬂ). The pseudo-code for
i-RECON is given in Algorithm 1. D-LP is the following
maximization linear program, which returns the solution
vector (X, v4, Uq), such that v, is the desired lower bound.

max vqg
X,Vd,Vq

s.t. Constraint(11), (14) and (15)

z; > 7q:(va) + min{0, — AT} (23)

(24)

va >0y e >0l

Constraint (24) is added to D-LP to ensure that we get a
monotonically increasing solution in every iteration. Simi-
larly, given v} and v{", A-LP is the following minimization

3This is not equivalent to the unconditional equation
2; > max{7a,i(vVa), 7d,i(Va) }

22

problem. It minimizes v, to guarantee that Constraint (23)
in D-LP remains a restriction to Constraint (22) for the next
iteration, ensuring D-LP always provides a lower bound of
RECON. More details are in Proposition 1 which proves the
correctness of i-RECON.

min v,
X,Vd,Vq

s.t. Constraint (11), (14) and (15)
T; > Ta,i(ve) + min{A7* 0}

Vg > vl

(25)
(26)

Proposition 1. Both D-LP and A-LP are feasible and
bounded for every iteration k until i-RECON converges.

Proof. We omit the proof of the proposition; the details can
be found in Yin et. al (2011). O]

Experimental Results

We provide two sets of experimental results: (1) we com-
pare the solution quality of RECON, ERASER, and COBRA
under uncertainty: ERASER (Jain et al. 2010) is used to com-
pute the SSE solution, where as COBRA (Pita et al. 2010) is
one of the latest algorithms that addresses attacker’s obser-
vational error.* We also provide these solution quality results
obtained using simulations with execution and observational
uncertainty. (2) We provide the runtime results of RECON,
showing the effectiveness of the two heuristics a-RECON
and i-RECON. In all test instances, we set the number of de-
fender resources to 20% of the number of targets. Payoffs
US(t;) and U¥(t;) are chosen uniformly randomly from 1 to
10 while U} (t;) and US(t;) are chosen uniformly randomly
from —10 to —1. The results were obtained using CPLEX on
a standard 2.8GHz machine with 2GB main memory, and
averaged over 39 trials. All comparison results are statisti-
cally significant under t-test (p < 0.05).

Measuring robustness of a given strategy:

Given a defender mixed strategy x, a maximum execution
error a, and a maximum possible observation error 3, the
worst-case defender utility is computed using the following
MILP. This MILP finds the executed strategy y, and the ob-
served strategy z that hurt the defender the most.

min Vg 27
¥.2,0,Vd,Va
st vg > Di(y:) — (1 —qi)M (28)
Ai(z) Svq < Ai(z) +(L—q)M  (29)
—a; <y~ <o (30)
—Bi <zi—uyi <P (31)
Y a=1 (32)
tieT
i,z €[0,1]; ¢ € {0,1} (33)

*The bounded rationality parameter ¢ in COBRA is set to 2 as
suggested by Pita et al.(2010). The bias parameter « is set to 1
since our experiments are not tested against human subjects.
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Figure 1: Experimental results: Quality of solution.

This MILP is similar to the second-level optimization prob-
lem given in Constraints (3) to (6). Here, x is the input de-
fender strategy whose robustness has to be evaluated, while
y and z are continuous variables and again represent de-
fender’s execution and attacker’s observation. In addition,
the variables v4 and v, denote the defender’s utility and the
attacker’s utility with respect to y and z. Finally, the inte-
ger variables ¢; enforce the best response constraint of the
attacker, i.e. v, = maxy,er 4;(2;).

Figure 1(a) and Figure 1(b) presents the comparisons
between the worst-case utilities of RECON, ERASER and
COBRA under two uncertainty settings — low uncertainty
(a = B = 0.01) and high uncertainty (« = 3 = 0.1).
Also, MAXIMIN utility is provided as a benchmark. Here
x-axis shows the number of targets and y-axis shows the de-
fender’s worst-case utility. RECON significantly outperforms
MAXIMIN, ERASER and COBRA in both uncertainty set-
tings. For example, in high uncertainty setting, for 80 targets,
RECON on average provides a worst-case utility of —0.7,
significantly better than MAXIMIN (—4.1), ERASER (—8.0)
and COBRA (—8.4).

Next, in Figure 1(c), we present the ideal defender utilities
of ERASER and COBRA assuming no execution and obser-
vational uncertainties, comparing to their worst-case utilities
(computed as described above). Again, x-axis is the number
of targets and y-axis is the defender’s worst-case utility. As
we can see, ERASER is not robust — even 0.01 noise reduces
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the solution quality significantly. For instance, for 80 targets
with low uncertainty, ERASER on average has a worst-case
utility of —7.0 as opposed to an ideal utility of 2.9. Similarly,
COBRA is not robust to large amount of noise (0.1) although
it is robust when noise is low (0.01). Again, for 80 targets,
COBRA on average has an ideal utility of 1.2,however, its
worst-case utility drops to —7.0 in high uncertainty setting.

Moreover, in Figure 1(d), we show the quality of RECON
with increasing noise froma = 3 =0to a = 3 = 0.15.
The x-axis shows the amount of noise while the y-axis shows
the defender’s utility returned by RECON. The three lines
represent 20, 40, and 60 targets respectively. As we can see,
while ERASER and COBRA cannot adapt to noise even when
bounds on noise are known a-priori, RECON is more robust
and provides significantly higher defender utility.

Finally, we also conducted simulations considering uncer-
tainty arising from limited number of observations available
to an attacker. The simulation was set up such that in each
trial for each input game, the attacker will get a fixed num-
ber of observations based on which he will estimate the de-
fender’s strategy, and eventually compute his best response.
Each observation of the attacker is a sample of the defender
strategy, where each sample is the exact set of targets pro-
tected by the defender resources. The attacker chooses his
best response t* after the given number of observations; the
defender draws another sample from her strategy and the
payoff of the defender is US(t*) or U}(t*) depending on
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Figure 2: Experimental results: Number of nodes explored by 3 variants of RECON.

whether or not ¢t* is covered in this sample. For each game,
the above process is repeated 30 times and the defender util-
ity is the average defender payoff over these 30 trials.

The attacker’s observed coverage probability for any tar-
get follows a binomial distribution, depending on the num-
ber of observations. More the number of observations, more
accurate is the attacker’s observed strategy compared to the
intended defender strategy. For example, a target with an in-
tended defender coverage probability of 0.5 will have a 0.66
probability of being observed as covered 4 to 6 times in 10
observations (0.1 noise). However, the probability of observ-
ing the same target covered between 40 to 60 times in 100
observations goes up to 0.94.

The simulation results are presented in Figures 1(e)
and 1(f), where the y-axis shows the defender utility aver-
aged over 30 random security games and the x-axis shows
the number of observations allowed to the attacker. We ex-
clude MAXIMIN and ERASER from this experiment, since
their worst case performance in the presence of uncertainty
is significantly poor (refer Figure 1(a)). We compare RE-
CON with @« = 3 = 0.01 and « = B = 0.1 against
COBRA. For example, for 10 targets and 100 observations,
COBRA obtains a solution quality of —0.15 whereas RECON
with &« = B = 0.01 obtains 0.56. On the other hand, RE-
CON with @ = 3 = 0.1 obtains —0.73. While RECON with
a = 3 = 0.01 always outperforms COBRA, RECON with
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a = 3 = 0.1 loses out since it sacrifices the expected solu-
tion quality for worst case protection.

Runtime results of RECON:

Figures 2(a) and 2(b) show the runtime results of the three
variants of RECON— RECON without any lower bounds,
and with lower bounds provided by a-RECON and i-RECON
respectively. The x-axis shows the number of targets and the
y-axis (in logarithmic scale) shows the total runtime in sec-
onds. Both a-RECON and i-RECON heuristics help reduce
the total runtime significantly in both uncertainty settings
— the speedup is of orders of magnitude in games with large
number of targets. For instance, for cases with 80 targets and
high uncertainty, RECON without heuristic lower bounds
takes 3, 948 seconds, whereas RECON with a-RECON lower
bound takes a total runtime of 52 seconds and RECON with
i-RECON lower bound takes a total runtime of 22 seconds.
Furthermore, we can see in Figure 2(a) and 2(b),
a-RECON works better than i-RECON in low uncertainty set-
ting while i-RECON works better than a-RECON in high un-
certainty setting. The reason can be explained by the fact
that a-RECON needs to explore significantly more nodes in
higher uncertainty setting since the weakly inducible set
tends to be bigger. We summarize the number of nodes
CPLEX explored for the three algorithms in Figures 2(c)
and 2(d) where the y-axis (in logarithmic scale) shows the



number of nodes explored and the x-axis shows the num-
ber of targets. As an instance, for 80 targets and high un-
certainty, RECON explores 7.6 x 10° nodes with no lower
bound, 9.4 x 10* nodes with a-RECON lower bound (total
number of nodes explored by RECON MILP and a-RECON
MILP), and 2.8 x 10% nodes with i-RECON lower bound.

We further compare the performance of a-RECON and
i-RECON in terms of their runtime and lower bounds
returned. As shown in Figure 2(e), both a-RECON and
i-RECON can provide lower bounds close to the optimum
even in a high uncertainty setting, justifying their effective-
ness of speeding the RECON MILP. Comparing to i-RECON,
a-RECON provides a slightly tighter lower bound, however,
the difference is diminishing with increasing number of tar-
gets.

Conclusions

Game-theoretic scheduling assistants are now being used
daily to schedule checkpoints, patrols and other security
activities by agencies such as LAX police, FAMS and the
TSA. Augmenting the game-theoretic framework to handle
the fundamental challenge of uncertainty is pivotal to in-
crease the value of such scheduling assistants. In this pa-
per, we have analyzed the robust solutions provided by RE-
CON, a recent model that computes risk-averse strategies for
the defender in the presence of execution and observation
uncertainty. Our experimental results show that RECON is
robust to such noise in expectation as well as simulation,
where the performance of existing algorithms can be arbi-
trarily bad. Additionally, we have extensively analyzed two
heuristics, a-RECON and i-RECON, that further speed up the
performance of RECON. This research complements other
research focused on handling other types of uncertainty such
as in payoff and decision making (Kiekintveld, Tambe, and
Marecki 2010), and could ultimately be part of a single uni-
fied robust algorithm.
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