Automated Action Planning for Autonomous Mobile Robots: Papers from the 2011 AAAI Workshop (WS-11-09)

Optimization and Coordinated
Autonomy in Mobile Fulfillment Systems

John J. Enright and Peter R. Wurman
Kiva Systems
North Reading, MA
{jenright,pwurman } @kivasystems.com

Abstract

The task of coordinating hundreds of mobile robots in one of
Kiva System’s warehouses presents many challenging multi-
agent resource allocation problems. The resources include
things like inventory, open orders, small shelving units, and
the robots themselves. The types of resources can be classi-
fied by whether they are consumable, recycled, or scheduled.
Further, the global optimization problem can be broken down
into more manageable sub-problems, some of which map to
(hard) versions of well known computational problems, but
with a dynamic, temporal twist.

Introduction

Kiva’s innovative approach to warehouse automation uses
hundreds of custom-built mobile robots that carry small
shelving units and deliver products to human operators. The
humans stand at work stations along the perimeter of a stor-
age area that is filled with thousands of storage shelves. The
robots fetch specific inventory shelves from the storage area
and bring them to the stations where, guided by software
and laser pointers that identify the proper inventory on the
shelving unit, the operators pick the inventory and put it into
the outgoing shipping cartons. The Kiva system has many
advantages (Wurman, D’ Andrea, and Mountz 2008), not the
least of which is that, by eliminating the walking required
in traditional warehouses, the system makes operators 2 to 3
times more productive.

An example Kiva robot and pod are shown in Figure 1.
The robots are relatively simple from a mechanical point of
view. They have a pair of side-mounted drive wheels and a
lifting mechanism capable of raising inventory pods about
two inches into the air. The robots are bi-directional, and
have sensors mounted on front and back for obstacle detec-
tion. The robot’s navigation system involves a combination
of dead reckoning and cameras that look for fiducial markers
placed on the floor during system installation. While the me-
chanics are straightforward, the onboard control system that
allows the robot to operate at an industrial level of reliability
is quite sophisticated.

As interesting as individual robots are, they are to a ware-
house what taxis are to a city. The complexity of the ware-

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

33

Figure 1: An inventory pod being carried by a Kiva robot.

house is truly expressed in the warehouse control software
that runs on the servers.

From a computer science point of view, Kiva’s mobile ful-
fillment system represents an exemplary multi-agent appli-
cation. Each robot (drive unit, in Kiva jargon) and each work
station is an independent agent with some measure of auton-
omy. There are also several agents that make allocation de-
cisions that are critical to the overall productive behavior of
the whole. These agents are distributed across several blade
servers and the desktop computers at each work station.

The objective of this paper is not to explain the algorithms
and optimizations that Kiva has deployed. Rather, it is to
describe the problem domain with enough detail to encour-
age other researchers to investigate it. We believe that the
problem domain embodies many fascinating computational
challenges that can be approached with tools from a variety
of disciplines.

Box Take Away
Conveyor

N

i Picking
pioking (> Fisking
Satns & & & % N2 [S
Box
4 Induction |4 -!
J Stations |
[N | I | O Y Y [Y T O A B I O
IR A A I AR A
I [N I I N R N gl =i b
[T R R R T O R B S e EHIHNRH I HESSH IR HR
] [N W Wl A N A I A R %
III!I!I!I!I!I!I!I! I!I!I!I!I!I!I!I!I!
I T 1 I I I R O A 0 I I T Y O I | 1 O O |
Lodbod bed bod bodfe.d bad Lad Lod Lo L.J‘L._i Lodbt.di.di.dfi.s L. L 2
l_lﬂ_l [T N I B B N R S] [| T O Y B | I T b
O [R (A [X
[1 T I R A A | | | I | A A | R I ‘.3°’$
Lodfi.dbodb.di.db.d g iL.dfi.d Lodb.dfe.diod g g bodfe.dL.d Shipping
\ \ Stations
| |-|
\ Iy \ ly
Inventory Pod Inventory Pod
Storage b3 \ ? Storage % 2
Blocks Blocks

Replenishment
Stations

Replenishment
Stations

Figure 2: The ItemFetch configuration (left) and the OrderFetch configuration (right).

Resources in a Kiva System

As Kiva’s product line has grown, the complexity of the re-
source allocation problems has increased. In order to under-
stand the range of allocation decisions the system makes, it
is necessary to understand the major flows within the system.
At the same time, we’ve simplified the following descrip-
tion to represent a typical implementation. The actual sys-
tem supports considerable variation on these themes, and in-
cludes subsystems not dealt with here, like inventory count-
ing, robot recharging, and trash removal.

Figure 2 shows the two main flows within a Kiva sys-
tem. The left image shows a warehouse configured with the
ItemFetch configuration of a Kiva system. In this configu-
ration Kiva is responsible for transporting the inventory, but
not the shipping cartons. The inventory cycle (red and pur-
ple arrows) captures the lifecycle of the shelving units that
hold products in the warehouse. These shelving units, called
pods, are logically a collection of storage locations, called
bins. Bins are filled by humans at replenishment stations,
and are incrementally emptied—again by humans—at picking
stations. In between these two activities, they may be stored
in the storage blocks, like cars in a large parking lot. In an
ItemFetch configuration, the pick workers build the shipping
cartons and push them onto a take-away conveyor to trans-
port the finished boxes to the shipping area (blue arrow).

However, a Kiva system can also be configured to trans-
port the orders, as shown in the right image of Figure 2. In
such cases, we deploy a second set of pods designed to hold
outgoing shipping cartons. These pods travel in the order cy-

34

cle (shown as blue and green arrows). An empty order pod
first goes to a box induction station, where an operator builds
empty boxes and stages them on the order pod. An order pod
may carry as many as a dozen orders at a time, though the
actual capacity of the pod varies considerably between im-
plementations. The order pods then travel to pick stations
where they park alongside the operator. Robots bring inven-
tory pods to the front of the operator, who is directed by the
station agent to move the required product from the inven-
tory pod to the appropriate carton on the order pod. Once
all of the orders on an order pod have been fully picked, a
robot picks up the order pod and returns it to storage. At
the appropriate time, the order pod is delivered to a shipping
station, where the completed boxes are removed and put on
delivery trucks. Note that between any two stations in the
cycle, the system may be required to store the pod until the
appropriate time to take it to the next station.

When configured with order pods, we refer to the system
as an OrderFetch implementation. Note that such a system
still includes inventory pods and the inventory cycle. An Or-
derFetch system enables the customer to have random access
to finished orders, and greater flexibility to hit truck deliv-
ery deadlines. Often, an OrderFetch system is more cost-
effective than an ItemFetch system and a conveyor-based
buffering and sorting solution for finished packages.

It is illuminating to view the system as a collection of mul-
tiple types of scarce resources with different attributes:

e Inventory: naturally, physical units of inventory are a con-
sumable resource. Units of inventory follow a cycle from

replenishment to available on a pod, to allocated to an or-
der, to picked into an order. A typical customer may have
10,000 to 100,000 or more unique product types. Each is
described by its dimensions, packaging quantities, and its
velocity (the frequency with which it is ordered). It is very
common in practice for inventory velocities to follow the
80/20 rule: 20% of the products account for 80% of the
order volume.

Inventory pods: pods are a shared, scheduled resource.
Only one robot can carry a pod at a time, and the pod can
visit only one station at a time, although it can be sched-
uled to visit more than one station sequentially. Pods may
be square or rectangular, and the bins on each shelf may
be accessed from one or more of the four faces of the
pod. A typical installation may have 5,000 or more stor-
age pods.

Storage bins: bins on pods are a recyclable resource. Bins
are filled at replenishment stations and decremented at
pick stations. Once they are completely emptied, they be-
come available again for new products. Unlike traditional
warehouse systems, a storage location in Kiva does not
have to be filled with the same inventory that it previously
held. Because pods can consist of one to one hundred
bins, the number of storage bins in a Kiva system can eas-
ily exceed 100,000 addressable locations.

Shelf space for orders: in an ItemFetch configuration,
workers put boxes onto a shelf and fill them with in-
ventory from the pods. The shelves are limited in size,
and can hold only a certain number of boxes at a time.
This shelf space is recyclable in the sense that once the
worker pushes a completed order onto the conveyor, that
shelf space becomes available for another order. A typical
ItemFetch station can have 4 to 20 orders staged at a time.

Orders: orders are another consumable resource. It may
be counter-intuitive to think of them as such, because they
represent the output of the system. However, a core allo-
cation problem is how to choose one order from a set of
available orders to assign to stations. Once an order is
assigned, it is removed from the pool of available orders.
Orders themselves are defined by a list of line items. Each
line represents the demand for a specific quantity of units
of a particular product-type. The number of lines in an or-
der varies considerably between customers, but is usually
well-modeled as an exponential distribution. Customers
that use Kiva for retail restocking often know the orders
the night before, and so the available pool of assignable
orders at the beginning of the day represents an entire
day’s work. On the other hand, customers that use Kiva
for e-commerce fulfillment receive orders all day—often
with a peak in the afternoon—and have to fill the orders
the same day. In such cases, there is a smaller rolling
window of available orders.

Order pods: when the system is in an OrderFetch config-
uration, workers induct empty boxes onto order pods at
an induction station. These pods then travel to picking
stations and shipping stations. Order pods can carry from
two to eight orders, and a typical installation will have 250

35

such pods. Importantly, while order pods themselves are
scheduled resources, they also represent an aggregation
of orders for downstream allocation steps. The perfor-
mance of the system can depend heavily on which orders
are placed together on an order pod.

e Parking spaces: because inventory pods, and to a lesser
extent order pods, spend much of their time parked, wait-
ing until they are needed, the effective allocation of park-
ing spaces is also critical. Parking spaces fill the interior
of any Kiva installation in blocks, like a well-planned city.
An installation will have as many parking spaces as pods
so that when all of the workers go home for the night (if
they go home at all), every pod has a place to park. We
consider parking spaces recycled resources because once
a pod is removed from a space, that space becomes avail-
able for any other pod to be stored in it. In the same way
that bins are not required to have the same products re-
plenished into them after they’ve become empty, parking
spaces are not reserved for any particular pod.

e Robots: the robots themselves are shared, scheduled re-
sources. Robots can carry only one pod at a time, and
they can visit only one station at a time. They are dual
purpose, and can carry both inventory and order pods. To
date, Kiva has installed several solutions with over 500
robots each, and one installation that has 1,000 robots.

e Stations: the perimeter of a Kiva system is often lined
with picking and replenishment stations. In OrderFetch
installations, the induction and shipping stations are also
mixed in. Stations are a scheduled resource, but they dif-
fer from the others in that they have the ability to phys-
ically buffer arriving pods in a queue for rapid-fire pick-
ing. Depending on the types of products and the tasks
involved, operators may interact with a pod for as few as
four seconds or as long as two minutes, and it is very im-
portant to keep all the operators both busy and load bal-
anced. A large Kiva system can have 150 or more stations.

Because of the tight interaction of these semi-autonomous
agents and their resources, we refer to the system behav-
ior as coordinated autonomy: the agents operate largely au-
tonomously when working on their individual tasks, but be-
cause they compete intensely for resources, the system pro-
vides a significant amount of coordination support through
the careful allocation of resources.

Interesting Allocation Problems

At a high level, optimizing the system requires a dual objec-
tive function: keep the operators as busy as possible while
minimizing the amount of equipment necessary, particularly
pods and robots. These objectives correspond to minimizing
the operational expenses (people) and the capital expenses
(equipment) subject to the constraint that all of the work
must be completed each day. The two objectives are not
always compatible; for example, a solution with a robot per
inventory pod would be most likely to keep the workers busy
at all times, but would also be unacceptably expensive. In
practice, we assume keeping all of the workers fully occu-
pied is a constraint, and therefore the objective is to mini-
mize the equipment.

Figure 3: The steps of a robot’s task to deliver inventory.

The main mechanism that we have to reduce the equip-
ment costs is to do more work with fewer robots. A robot’s
task involves the five steps shown in Figure 3:

1. Drive from the robot’s current location to the pod’s cur-
rent location.

2. Carry the pod from its current location to the station’s
queue.

3. Queue at the station until it is the pod’s turn.
4. Let the operator pick inventory from the pod.
5. Store the pod back into the storage area.

Improving any or all of Steps 1, 2, 3, or 5 will help reduce
the equipment required to sustain the operator rate. How-
ever, once the robot and the pod are selected, there is not
much you can do to reduce the length of the legs of the mis-
sion. All of the choices that reduce the driving distances are
made before the robot and pod are selected.

Perhaps the biggest lever for reducing the number of
robots needed is to increase the average number of items
picked from each pod that makes a delivery. For example,
if we changed the average number of items picked during a
delivery from 1.0 to 2.0, we would need about half of the
number of robots.

We refer to this general concept of number of lines picked
per pod as pile-on. It comes in several varieties, some of
which are more amenable to improvement than others. Bin
pile-on occurs when two or more orders both require product
from the same bin, at the same station, at the same time.
Face pile-on occurs when multiple bins are accessed on the
same face of the pod during one face presentation by the
robot. The items being picked may be for a single order, or
for multiple orders at the station. In contrast to face pile-
on, station pile-on captures all inventory removed by that
station from that pod during that visit, even if the picking
requires that the pod be rotated in order to be picked from the

36

other side. Finally, there is mission pile-on which captures
the number of items picked during the the robot’s complete
engagement with the pod. A robot journey that takes a pod
to three stations, each of which picks one item, would have
individual station pile-on of 1.0, but have 3.0 mission pile-on
for the entire trip.

One of the things that makes the Kiva system so attractive
from an algorithmic point of view is that, while the overall
computational problem is an intractable, dynamic, stochastic
optimization with incomplete information, it is amenable to
decomposition into very approachable sub-problems. It re-
mains to be seen whether approaches that address the global
optimization problem perform better than those that decom-
pose the problem. In the following, we highlight some of the
sub-problems and discuss their impact on the above steps of
a robot mission.

Inventory Pod Selection Problems

Perhaps the most straightforward optimization opportunity
occurs when we have to select a pod to deliver inven-
tory to a station. Typically, a station has multiple or-
ders that it is working on with multiple open lines to pick.
Thus, when selecting the next pod to deliver we have from
just a few to potentially hundreds of pods that have in-
ventory that would satisfy some line at the station. The
pods vary by distance, and the set of open lines they sat-
isfy. At a particular instant in time, this problem corre-
sponds to the multi-set multi-cover problem (Dobson 1982;
Rajagopalan and Vazirani 1993). However, in reality, the
problem has a temporal dimension that is rarely explored;
once an order (or order pod) is completed at the station, an-
other order (or order pod) will take its place, bringing even
more open lines with it. The timing of the arrival of the new
order relative to the arrival of previously selected inventory
pods will also affect the efficiency of the system.

The formulation of optimal pod selection should also take
into account both the pros and cons of selecting a pod that
is already scheduled to visit other stations. When a pod
bounces from one station to another—station hopping in Kiva
jargon—we get to amortize the costs of Steps 1 and 5 across
multiple station visits. This benefit is counter-balanced by
the fact that station hopping usually introduces a further de-
lay before the pod arrives at a station, and a dependency on
the workers at the previous station(s). Moreover, the deter-
mination of the optimal sequence in which to visit the sta-
tions is an instance of a traveling salesman problem (dis-
cussed below).

Pod Storage Allocation

When we are finished with a pod, whether it is an inventory
pod or an order pod, we need to decide where to store it.
There is an obvious tension between storing it nearby, and
reducing Step 5, and storing it near where it is likely to be
used next, reducing a future Step 2. At the same time, there
is an opportunity cost associated with putting a slow pod
near the picking stations. A slow pod might move once every
two hours, while a fast pod might move every 15 minutes.
We would prefer to use the most convenient parking spots
for the faster pods because, over a two hour period, we will

save time on eight trips for the fast pod, but only one trip had
we stored the slow pod in the good parking spot.

Order Allocation Problems

In the above discussion, we assumed that the orders were
present at the station when the pods were being selected.
However, the decision about which orders to assign to a sta-
tion is one of the most critical in the system. First, we con-
sider the problem in an ItemFetch configuration where the
outgoing shipping containers are built at the pick station and
placed on tables or shelves to be filled. In that configuration,
an operator is typically working on 4 to 12 orders. As an
order completes, and the operator pushes it onto a shipping
conveyor, the shelf location becomes available for a new or-
der. Typically, there are hundreds of new orders waiting to
be worked on. When choosing a new order to assign to the
station, we can examine the inventory that will be needed to
fill it, the open lines of the other orders already at the station,
and the types of inventory stored on pods near the particular
station. By making wise decisions about order allocation we
can both increase pile-on (Step 4) and decrease the time to
carry inventory (Step 2).

In an OrderFetch system, order allocation is really the act
of selecting a new order pod to replace the order pod that is
leaving the station. The same considerations apply to the se-
lection of the order pod as selecting an order to put on a shelf
in ItemFetch. However, because order pods also need to be
delivered to stations by robots, there is a complex coordi-
nation that must take place to smoothly remove one pod and
bring in its replacement with as small a time gap as possible.

The OrderFetch scenario adds another layer of complexity
to the management of orders. At the induction station, gen-
erally well before the time at which we can deliver an order
pod to a picking station, we have to decide which orders to
put together on the order pod. Clearly, putting together or-
ders that have lines in common is likely to improve bin pile-
on. A more difficult and interesting question is whether we
can anticipate which station the order pod will be assigned
to, what other order pods will be present at the station, and
what inventory might be around that station at the time we
assign this order pod. Good decisions at this point can in-
crease pile-on later, and reduce the time spent taking pods to
stations.

Once the orders are filled, the order pod is eligible for
shipping. Shipping stations are typically configured to load
particular trucks, like Fedex or UPS, and usually have dead-
lines. Some customers fill large, 40’ trailers, which go to
carrier hubs like UPS, while others fill small vans which do
local deliveries. Although the allocation of an order pod to
the shipping station is relatively straightforward, the priori-
ties and sequencing of these truck deadlines influences many
of the decisions upstream. For example, if the Fedex truck
is leaving at 6:00pm and the UPS truck is leaving at 7:00pm,
then around 5:00 priority should be given to Fedex at both
the induction and the picking stations. Then, once the 6:00
deadline has passed, Fedex should be de-prioritized because
the remaining orders have to wait until tomorrow for the next
pickup.

37

Replenishment Allocation Problems

A typical warehouse holds three days worth of inventory.
This means that each day, one third of the inventory is emp-
tied and must be refilled. Another critical allocation deci-
sion is the one that selects a bin in which to store product
when the replenishment operator stages inventory for put-
away. The replenishment decision must take into account
the physical properties of the product and those of the avail-
able bins, and should try to maximize the cubic utilization
of the pods. However, by also looking at the other prod-
ucts on the candidate pods, there are opportunities to im-
prove things even further. For example, by putting products
of similar velocity together, we can create “faster” pods and
“slower” pods. Then we can store the fast pods near the pick
stations, and the slow pods near the back of the warehouse.
By doing so, we should reduce the average amount of time
spent on Step 2. A similar idea that instead addresses pile-
on, and thus Step 4, is to try to look for product synergies,
like storing peanut butter with jelly. In theory, leveraging
these synergies would increase the likelihood that we will
get pile-on.

Yet another dimension of replenishment is determining
the ideal number of bins that a product should be stored in.
A slow product will probably occupy only one or two bins in
the entire system. But a high velocity product may occupy
a hundred bins just because many more units move through
the warehouse on any given day. The replenishment deci-
sion should account for the product’s overall presence in the
warehouse, and perhaps drive towards some ideal number of
bins for a given product to occupy.

Robot Allocation Problems

Now we turn our attention to the task of assigning robots to
delivery tasks. Given that a pod is selected, there are three
basic problems.

First, we have the problem of deciding which robot will
be allocated to a pod that needs to be delivered. In a busy
Kiva system, there are not many robots sitting around idle,
but there are robots completing missions frequently. If there
are 1000 robots, and each does a 5 minute round trip to de-
liver inventory, then 3 to 4 robots are setting down their pod
every second and become available for another mission. Fur-
thermore, we have some visibility into robots that will be
coming free in the near future. Given a large set of pods
that need to be delivered and a set of robots that are free or
soon to be free, we have a straightforward matching prob-
lem to associate the robots to the pods, with the objective of
minimizing time spent in Step 1.

However, the problem becomes more interesting when we
consider whether we should allocate a robot to a pod at the
current moment in time. In order to minimize time spent in
queues we need to avoid sending robots to a station faster
than the operator can process them. To further complicate
the problem, different operators perform their tasks at dif-
ferent speeds, and some products are naturally harder to pick
than others. Also, some stations are positioned on the floor
in more advantageous locations—near the inventory—while
others are stuck in corners and the average time to deliver

inventory is higher. All of these things need to be taken into
account in order to balance the allocation of robots across
stations and reduce the amount of time spent in Step 3.

Having allocated a robot to a pod, the second step is to
compute a path for the robot to drive from its current lo-
cation to the pod, and then from the pod’s location to the
destination. Path planning for a single robot is perhaps the
most well understood component of a Kiva system, espe-
cially because the entire warehouse is laid out as a simple
grid. One can apply well known algorithms like A* or vari-
ations of Djikstra’s algorithm. However, path planning in an
environment with the density of moving robots that we find
in a Kiva system is much less well understood. Some re-
search (Roozbehani and D’ Andrea 2011; Smith et al. 2010;
Treleaven, Pavone, and Frazzoli 2011) has begun to address
issues that would benefit a Kiva system. Improvements in
this area would help Steps 1, 2, or 5 by making the actual
travel between points A and B more efficient.

A final area of research is the TSP problem mentioned
above, which occurs when a robot must carry a pod to mul-
tiple stations. On the one hand, if the robot were the only
concern, we could formulate a TSP with the objective of
minimizing the total travel time. This basic problem is made
more interesting by the fact that we actually have a dynamic
TSP (Pavone et al. 2009), in which occasionally more sta-
tions are added to the list of places to visit.

However, the real complexity arises from the way the de-
livery schedule interacts with the order management at a sta-
tion. In an ItemFetch environment, an order can sit on the
shelf waiting for its last item of inventory and not dramat-
ically affect the other orders, because the pick worker can
fill other orders while she is waiting for the station-hopping
pod. Even so, there are instances where all of her remaining
orders are waiting for items that are on the pod that is sched-
uled to visit other stations before coming to hers. This basic
problem is exacerbated in an OrderFetch environment where
an entire order pod may be waiting for the inventory that is
station hopping. When an order pod is held up for more than
a few seconds, it can have a dramatic negative impact on the
the number of open lines that the worker can pick to, which
affects all of the other metrics. Finding an appropriate way
to apply TSP techniques while still preventing starvation of
the pickers is an interesting problem.

Alphabet Soup

In order to facilitate research into the above problems, in
2006 we made available a Java platform that provides an ab-
straction of the warehouse environment. In this simulation
we call Alphabet Soup (Hazard, Wurman, and D’Andrea
2006), the products in the warehouse are colored letter tiles.
The objective is to assemble words constructed from the cor-
rectly colored tiles. The letters are stored in buckets which
can be carried around by flying robots called bucketbots.
Letters are replenished into the system as bundles handled
at replenishment stations. The order profile is generated by
feeding the simulation a dictionary. The natural frequency
of letters in the language, along with a configurable varia-
tion in color frequency, create a realistic profile of product
velocities.

38

Currently, Alphabet Soup does not support an OrderFetch
model, but all of the basic inventory allocation problems
are represented, along with the basic issues associated with
high-density robot coordination.

Conclusion

Mobile fulfillment systems, like Kiva’s, represent a rela-
tively new and understudied class of resource allocation
problems. The problem of coordinating robots in ware-
houses brings together computational problems for a variety
of disciplines, including scheduling, decision making under
uncertainty, data mining, learning, robot path planning, and
classic optimization. Further, the Kiva system represents a
natural multi-agent system in which to study issues of co-
ordinated autonomy and decentralized decision making. In
short, we think the Kiva system, or an abstraction like Al-
phabet Soup, is an environment that presents a wide variety
of interesting and practical problems, and we encourage re-
search in the area.

Acknowledgments

A working robotic system like Kiva’s is the product of a
great deal of effort by a large number of talented mechanical,
electrical, and software engineers. We thank the world-class
Kiva employees who have built such a fascinating product.

References

Dobson, G. 1982. Worst-case analysis of greedy heuristics
for integer programming with nonnegative data. Mathemat-
ics of Operations Research 7(4):515-531.

Hazard, C. J.; Wurman, P. R.; and D’ Andrea, R. 2006. Al-
phabet soup: A testbed for studying resource allocation in
multi-vehicle systems. In Proceedings of the 2006 AAAI
Workshop on Auction Mechanisms for Robot Coordination,
23-30.

Pavone, M.; Bisnik, N.; Frazzoli, E.; and Isler, V. 2009. A
stochastic and dynamic vehicle routing problem with time
windows and customer impatience. MONET 350-364.

Rajagopalan, S., and Vazirani, V. 1993. Primal-dual RNC
approximation algorithms for (multi)-set (multi)-cover and
covering integer programs. In Proceedings of the 1993 IEEE
34th Annual Foundations of Computer Science, 322-331.

Roozbehani, H., and D’Andrea, R. 2011. Adaptive high-
ways on a grid. In Pradalier, C.; Siegwart, R.; and Hirzinger,
G., eds., Robotics Research, volume 70. Springer Berlin /
Heidelberg. 661-680.

Smith, S. L.; Pavone, M.; Bullo, F.; and Frazzoli, E. 2010.
Dynamic vehicle routing with priority classes of stochastic
demands. SIAM J. Control and Optimization 3224-3245.
Treleaven, K.; Pavone, M.; and Frazzoli, E. 2011. An
asymptotically optimal algorithm for pick-up and delivery
problems with application to large-scale transportation sys-
tems. Submitted.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9-20.

