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Abstract

This paper presents a novel scoring rule-based mechanism
that encourages agents to produce costly estimates of future
events and truthfully report them to a centre when the budget
for payments to the agents is itself determined by their re-
ports. This is applied to a model of aggregated demand pre-
diction within a microgrid where, given estimates of future
consumptions, an aggregator must optimally purchase elec-
tricity for a set of homes, each represented by self-interested,
rational home agents. This in turn reduces the need for costly
standby generation within the grid. The aggregator has prior
information about the amount each home will consume, and
determines the amount to pay each agent based on savings
resulting from using the agents’ reported information, over
its own prior information. Agents use sensory information
regarding their property and its occupants to generate these
estimates, which they transmit to the aggregator using smart
grid technology. The proposed mechanism is dominant strat-
egy incentive compatible and empirical evaluation shows that
it encourages agents to exert effort in producing precise esti-
mates. We show that the mechanism is ex ante individually
rational for the aggregator, and that it outperforms a simpler
mechanism whereby savings are distributed evenly.

1 Introduction
The supply and demand of electricity, unlike other com-
modities, must be constantly balanced in real time. How-
ever, adjusting the amount of electricity being generated on
the grid in real time is a costly procedure, and thus electricity
markets are designed to encourage the participant to make
accurate estimates of the electricity that they will generate
or consume. As in the BETTA arrangements in the UK, this
is typically done through a combination of forward markets,
where generators and retailers exchange bilateral contracts,
and a balancing market in which participants must buy or
sell any real-time electricity imbalance at a cost penalty. To
date, predictions of consumer demand have been made us-
ing statistical techniques applied to historical data. How-
ever, with the cost of electronics ever decreasing, the deploy-
ment of sensors and monitoring equipment within homes
and buildings is becoming evermore ubiquitous. As such,
a wealth of information regarding the electrical consump-
tion and behavioural patterns of a building’s occupants is
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becoming available for exploitation by the electricity indus-
try. For example, non-intrusive appliance load monitoring
can be used to build profiles of device use within a home
such that usage patterns can be determined simply by sam-
pling the overall consumption of the building (Zeifman and
Roth 2011; Gupta, Reynolds, and Patel 2010). Moreover,
sensors can be used to determine the characteristics of the
building itself – its heating characteristics, and heat-leakage
profiles for example. Furthermore, with the gain in popular-
ity of cloud-services, more and more user information can be
found on the web. One online source of information could
be the occupants’ online diaries, detailing not only periodic
events that are easy to predict such as going to work, but also
one-off events that have large impacts on power consump-
tion such as social events within the house, or holidays.

It is clear then, that information is in abundance, and with
the advent of new, smart grid technology, this information is
becoming more accessible to novel services who can aggre-
gate said information and use it to optimise the way electric-
ity is purchased for those houses. This is achieved because
the smart grid develops the electrical grid into one not only
of energy but also data. In such a setting, autonomous home
agents can be tasked with collecting information specific to
their individual homes’ consumptions, requiring minimal in-
teraction from the home owner. Moreover, the bidirectional
flow of real-time information enabled by the smart grid can
be exploited to allow novel aggregation services to gather
this predictive data in order to better predict and purchase
electricity for their customers. This will reduce the need
for inefficient standby generation; a property that makes this
particularly useful in microgrid settings, as well as reduc-
ing carbon emissions and costs. Moreover, if these compa-
nies were to reward their customers for providing this in-
formation by paying them a share of the savings, both par-
ties would benefit. Nevertheless, any such payment scheme
would have to suitably reward precise and accurate estimates
of a homes energy consumption, and be robust against indi-
viduals attempting to game the system.

To this end, recent research has begun to use scoring rules
to elicit probabilistic estimates of future events. For exam-
ple, Miller, Resnick, and Zeckhauser (2005) discuss a peer-
prediction mechanism whereby agents are rewarded based
on how their beliefs correspond to reports of the same event
by other agents. They also discuss how such scoring rule-
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based mechanisms can be scaled such that agents are incen-
tivised to exert effort in generating their reports. More re-
cently, Papakonstantinou et al. (2011) extend that work to
develop a mechanism that elicits estimates of an event with
a specific precision and also discuss eliciting estimates from
multiple agents about a common event and fusing those esti-
mates to obtain a single estimate with a given precision (Pa-
pakonstantinou et al. 2011). Nau, Jose, and Winkler (2007)
extend work in Winkler (1994) to discuss the application
of weighted scoring rules, based on the traditional spherical
and quadratic rules, that take into account not only a proba-
bilistic estimate to be scored, but also a base estimate repre-
senting prior information. This allows agents to be scored on
the value of the information they report, so agents reporting
information to the centre that is already known will obtain a
lower score than those who report more useful information.

However, none of these mechanisms address the key chal-
lenge in our setting, whereby the payment that is redis-
tributed to the agents is dependent on the actual estimates
that they submit. All previous work has assumed that this
payment is constant or determined externally by the centre.
Furthermore, where this work has considered multiple re-
ports (namely Miller, Resnick, and Zeckhauser (2005) and
the papers by Papakonstantinou et al.), it has done so in a
setting where these reports are fused together. In contrast,
in our setting, the aggregator must determine the total de-
mand and so must convolve the individual homes’ energy
consumption estimates. Finally, many of these individual
solutions have unresolved issues that limit their applicabil-
ity. For example, the rules presented in Nau, Jose, and Win-
kler (2007) go partway towards addressing the issue of re-
warding agents based on extra information that they might
provide to the aggregator. However, in the continuous do-
main they are unbounded, and as such are problematic for
use in mechanisms that reward agents based on those scores.

Thus, to address these shortcomings, in this paper we
present a scoring rule-based mechanism that rewards agents
based on the incremental value they provide to the centre in
a setting where the total payments to the agents is also de-
termined by their own reports. We apply this to a model of
aggregated demand prediction whereby an aggregator col-
lects estimates of future consumptions of houses over which
it is responsible to optimally purchase electricity.

In more detail, in this paper we make the following con-
tributions to the state of the art:

• We present a new scoring rule-based mechanism named
sum of others’ plus max, which we apply to an aggrega-
tion scenario in the smart grid that rewards agents based
on the savings made by the aggregator when using the
agents’ estimates over the aggregator’s prior estimates.

• We prove that this mechanism is dominant strategy incen-
tive compatible and weakly budget balanced.

• We compare our mechanism using a computational ap-
proach to find the equilibrium state, to a benchmark mech-
anism applied to the same scenario, and show that the sum
of others’ plus max mechanism results in a greater social
welfare while allowing the aggregator to keep a greater
percentage of its savings. Specifically, we compare our

mechanism to a simple mechanism that equally divides
savings amongst agents.

The rest of this paper is structured as follows: Section 2
presents a model of aggregated demand prediction in the
smart grid. Section 3 presents the two mechanisms de-
scribed above, and discusses their properties. Section 4 em-
pirically evaluates how agents behave when participating in
the mechanisms. Finally, Section 5 concludes this paper.

2 Information Aggregation Problem

We now present a formulation of the information aggrega-
tion problem for demand prediction within the smart grid.
We discuss a scenario consisting of two types of agents – a
single aggregator agent, and N home agents, i ∈ H , where
H = {1, · · · , N}. The aggregator’s job is to gather informa-
tion about future electricity consumption of a set of homes
and then buy electricity for those homes. The homes each
have their own agent, whose job it is to collect specific, de-
tailed consumption information about the home for which it
is responsible and then to report an estimate of future con-
sumption to the aggregator. The aggregator can then use this
information to make better predictions of the future aggre-
gate consumptions, which, due to the design of the electric-
ity markets described earlier, reduces the total cost of the
electricity consumed for all the homes.

In more detail, each day, T , has one time period for which
the aggregator must purchase the amount of electricity it ex-
pects its agents to consume. The aggregator can purchase
electricity in one of two markets, dependent on the time at
which the electricity is being purchased. Electricity can be
bought one day ahead of its consumption in the forward
market, in which case it costs f per unit of electricity. At
the end of each day, the aggregator is charged for any im-
balance between the amount it purchased for consumption
and the amount it actually consumed. We say these trans-
actions are performed in the balancing market in which the
prices are designed by the market regulator to penalise sup-
pliers and consumers who do not generate or consume as
they predicted. The price at which the grid buys back excess
electricity, the system buy price, is f − δb per unit, and the
cost per unit of electricity bought from the grid to fill any
deficit, the system sell price, is f + δs. Therefore, the total
cost of consuming ω units of electricity when χ units are
initially bought is given by:

κ (ω |χ ) = f · χ + (ω − χ) ·
{
(f − δb), χ > ω

(f + δs), χ < ω
(1)

Each agent i has an estimate of its future consumption,
xi, represented by a Gaussian distribution1. Each belief
is parametrised by a mean μi, and precision θi = 1/σ2

i ,
such that xi = 〈μi, θi〉. Providing this estimate incurs a
cost defined by c(αi, θi) = αiθi such that more precise es-
timates are more costly to produce. This cost may reflect

1While other distributions can be applied, Gaussian distribu-
tions are used here since they well represent additive errors and are
computationally attractive since the sum of two Gaussian distribu-
tions is itself a Gaussian.
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the time, inconvenience or computational expense involved
in generating useful estimates. The aggregator also main-
tains its own belief about what each agent i, will consume,
xa,i = 〈μa,i, θa,i〉 generated through conventional statistical
analysis of historical consumption.

The day before the electricity is required, the aggrega-
tor asks each agent to report its estimate of tomorrow’s
consumption, x̂i, as a Gaussian with mean, μ̂i, and preci-
sion, θ̂i. Agents strategise over the precision of the esti-
mate that they actually generate, θi, and also the precision
that they report to the aggregator, θ̂i. The estimates re-
ported by the home agents are compared by the aggregator
to its own information, resulting in the set of aggregated es-
timates x̂ = 〈x∗1, · · · , x∗N 〉, when x∗i = x̂i if θ̂i > θa,i and
x∗i = xa,i, when θ̂i ≤ θa,i. In order to make our notation
less verbose, we here define the aggregated mean of all esti-
mates in x̂ as μ̂ =

∑
x∗
i∈x̂ μ∗i , and the aggregated precision

as θ̂ = 1/(
∑

x∗
i∈x̂ 1/θ∗i ). Similarly, for the aggregator’s be-

liefs, xa = 〈xa,1, · · · , xa,N 〉.
It is important to note that the aggregator does not fuse

any estimates reported by the agents as it is unaware of any
treatment of the information by the home agents. For ex-
ample, it cannot fuse its own historical estimates with the
estimates reported by the agents as the home agents may
have already used the same historical data in generating their
estimates, and thus, these estimates would not be indepen-
dent. Thus, the aggregator acts conservatively, assumes that
its own and the agents’ estimates are correlated and uses the
one with greater precision in the convolution. Also, note
that, as the aggregated belief is the convolution of Gaus-
sian distributions reported by the agents, the result is again
a Gaussian.

The aggregator then performs the following optimisation
in order to determine how much electricity it must buy in the
forward market such that its total expected cost is minimised
given an estimated aggregate consumption of x̂.

χ (x̂) = argmin
z ∈Ω

f · z −
∫ z

0

(z − y)(f − δb)N
(
y; μ̂, θ̂

)
dy+

∫ ∞

z

(y − z)(f + δs)N
(
y; μ̂, θ̂

)
dy

(2)

That is, it finds an amount to buy that minimises the cost of
buying z units at f in the forward market, and minimises the
total cost of the expected error in the balancing market.

At the end of each day, the actual amount consumed by
each agent, ω = 〈ω1, · · · , ωN 〉, is known by the aggregator.
The total consumption is defined as ω = Σωi∈ω ωi. Once
the consumption of each agent has been realised the aggre-
gator is then able to calculate precisely how much it saved
by using the agents information over its own. Using the cost
function, κ from Equation 1, and the optimisation function
from Equation 2 the saving made by the aggregator using
the agents estimates x̂, over its own estimates xa, when the
agents consume ω is defined as:

Δ(x̂,xa,ω) = κ (ω |χ (xa) )− κ (ω |χ (x̂) ) (3)

Similarly, the savings made by all agents except
agent i – those made by the aggregator had agent
i not participated in the mechanism – is defined as
above except using x̂−i = 〈x∗1, · · · , x∗i−1, x

∗
i+1, · · · , x∗N 〉,

xa,−i = 〈xa,1, · · · , xa,i−1, xa,i+1, · · · , xa,N 〉 and ω−i =
〈ω1, · · · , ωi−1, ωi+1, · · · , ωN 〉, in place of x̂, xa and ω re-
spectively.

The aggregator then allocates a fraction λ of the savings
earned to the reward mechanism that distributes it to the
agents. Each agent i is then rewarded for its information
by an amount defined by some reward function over the re-
ported means, variances, and outcomes P (x̂,ω). Therefore,
the agent’s utility is given by:

U (x̂,ω, αi) = P (x̂,ω)− ci (αi, θi) (4)

Since the aggregator uses the estimates provided by the
agents to purchase an amount of electricity that minimises
its expected costs, it must encourage the agents to truthfully
report estimates that are both accurate and precise. We re-
fer to an accurate estimate as having a mean close to the
realised outcome, and a precise estimate as one with high
precision. It does this by carefully designing the payments
it gives to agents for their information such that those pay-
ments are maximised in expectation when the agents behave
as required. In the next section, we use mechanism design
to design such payment schemes.

3 Mechanisms

We now present two mechanisms that allocate rewards to
agents for their information. A mechanism specifies a trans-
fer function, which defines the reward an agent receives for
a given reported estimate, x̂i, when an outcome, ωi, is re-
alised. Specifically, we consider three properties that are
desirable in the scenario presented earlier. First, our mecha-
nism should exhibit individual rationality. That is, all agents
gain a positive utility from participating in the mechanism in
expectation. This is an essential requirement of any mech-
anism designed for use within an aggregation service to
which customers may opt out – people will simply not use
the service if they expect to be worse off by so doing. Sec-
ond, our mechanism should be incentive compatible, which
means that an agent maximises its expected utility by truth-
fully reporting its estimate. This has obvious advantages
in the aggregation scenario described earlier – the aggrega-
tor needs to know the real estimates the agents hold in or-
der to generate accurate estimates of their aggregate future
consumption. Third, it should be weakly budget balanced,
which states that the aggregator does not run into deficit after
paying the agents for their estimates. We consider a mecha-
nism to be budget balanced if the aggregator spends in total
equal or less than it would have, had it only used its own
estimates and not elicited estimates from the home agents.
This is important because it is the aggregator that will im-
plement this mechanism, and if he does not expect to profit
from it, he will simply choose another model.

Expanding on the second requirement (incentive compat-
ibility), it is important to note that the ability to strategise
over whether or not to misreport is not unique to the home
agents. If individual home owners were to find a way to
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profit by misreporting the information they supply to the
home agent, it would be in their best interest to do so. Thus
an incentive compatible mechanism results in both home
agents and home owners reporting information truthfully.

Given this, we first discuss a simple mechanism whereby
the savings made by the aggregator are equally divided
amongst the home agents. Then, we discuss a further mech-
anism which uses the spherical scoring rule to define the
proportion of the savings distributed to each agent. Table 1
presents the mechanisms and their differing properties.

3.1 Uniform Scoring

The first mechanism presented in this paper simply divides
the savings made by the aggregator equally amongst the
agents. In this case, the reward given to each agent is:

PU (x̂,xa,ω, N) =
λ ·Δ(x̂,xa,ω)

N

Theorem 3.1 In the uniform scoring mechanism, truth
telling is a Nash equilibrium.

Proof The aggregator buys an amount of electricity for the
agents that minimises the total expected cost based on the
agents’ reported estimate. Clearly if all agents report truth-
fully, one agent deviating will only cause a larger error be-
tween the amount consumed and purchased, resulting in less
savings to be distributed to the agents and therefore a lower
utility for that agent. Therefore, when all agents report truth-
fully, a single agent is unable to improve its expected utility
by misreporting. However, truth telling is not dominant. If
an agent knows its neighbour will misreport, it can obtain
a better expected reward by also misreporting such that the
two errors cancel each other out. �

This mechanism will provide us with a benchmark on
which to base our comparisons. This simple mechanism is
both incentive compatible and budget balanced when used in
this model. However, it does not provide good fairness prop-
erties. Using this rule, all agents are rewarded equally ir-
respective of their actual contribution. An ideal mechanism
would reward the agents whose estimates made the most sig-
nificant increase in the aggregator’s savings with a greater
payment. Furthermore, the fact that truth telling is only a
Nash equilibrium means that agents can potentially expect
to benefit from misreporting their estimates if they believe
the other agents will also misreport. A stronger mechanism
would be strict dominance incentive compatible. That is,
an agent’s utility is maximised when reporting truthfully re-
gardless of its belief of the other agents’ actions. With this in
mind, we propose the sum of others’ plus max mechanism,
based on strictly proper scoring rules. Strictly proper scoring
rules are functions that are maximised in expectation when
an agent reports its estimates truthfully. Next, we present
next some background theory on the spherical scoring rule,
and then the sum of others’ plus max mechanism that uses it
to achieve strict dominance incentive compatibility.

3.2 Spherical Scoring Rule

The mechanism in the next section is based on the spherical
scoring rule. For a given prediction of an event with mean

μ̂i, and precision θ̂i, and a realisation of that event, ω, the
spherical rule is defined as follows:

S
(
ωi

∣∣∣μ̂i, θ̂i

)
=

N
(
ω;μ̂i, θ̂i

)
√∫∞

−∞N
(
x; μ̂i, θ̂i

)2

dx

(5)

The spherical rule is one of three strictly proper scoring
rules often studied in literature – the other two being the
logarithmic, and quadratic scoring rules. The term strictly
proper means that the score awarded by the function is max-
imised exclusively when the agent truthfully reports its esti-
mate. The spherical rule was chosen over the much simpler
logarithmic rule because it has a strict lower bound of 0,
whereas the logarithmic rule is unbounded. As a result, the
use of the logarithmic scoring rule could theoretically end
with a customer becoming forever in debt to the aggrega-
tion company after having received a score of −∞. This is
clearly unsatisfactory, and it could be argued that this fact,
no matter how rare its occurrence, could dissuade users from
ever joining the aggregation service.

3.3 Sum of Others’ plus Max

The sum of others’ plus max mechanism improves upon the
uniform mechanism by rewarding each agent individually
dependent on their reports. The result is that agents are more
fairly rewarded as those who provide precise and accurate
estimates receive a higher payment from the aggregator than
those who do not. This mechanism takes into account not
only the spherical score achieved by the agent, but also the
spherical scores achieved by the other agents in the system.
Crucially, payments are then determined by multiplying the
ratio of those scores by the savings made by other agents
in the system, which is necessary in order to preserve the
incentive compatibility of the mechanism.

Given all agents’ estimates, agent i is paid:

PS (x̂,xa,ω) =
S
(
ωi; μ̂i, θ̂i

)
· λ ·Δ(x̂−i,xa,−i,ω)

S
(
ωj ;ωj , θ̄

)
+Σxj∈x̂−i

S
(
ωj ; μ̂j , θ̂j

)

Here the S
(
ωj ;ωj , θ̄

)
term represents the maximum

score that can be achieved by an agent – the score achieved
when being accurate (reporting an estimate with mean ωj

and ωj occurring) and with the maximum precision of θ̄.
The payments awarded to agents by this mechanism are
fairer than those of the uniform scoring mechanism inso-
far as the agents are directly compared with each other by
dividing each agent’s score by the sum of all other agents’
scores. This is similar to calculating the percentage of the to-
tal score of all agents that agent i contributed. However, note
that in this calculation, agent i’s score is not included in the
divisor, and nor is the savings through using his information
included in the amount to be distributed to him. This is nec-
essary to maintain incentive compatibility in the mechanism.
Moreover, it is essential to divide the prescaled score by the
sum of the other agents’ prescaled scores plus the maximum
score in order to maintain budget balance (consider the case
in which agent i scores more highly than agent j).
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Name Reward Function Truth Telling Budget Balance

Uniform Scoring PU (x̂,xa,ω, N)=λ·Δ(x̂,xa,ω)
N Nash equilibrium Strong

Sum of Others’ plus Max PS
(
x̂,xa,ω, θ̄

)
=

S(ωi;μ̂i,θ̂i)·λ·Δ(x̂−i,xa,−i,ω)

S(ωj ;ωj ,θ̄)+Σxj∈x̂−i
S(ωj ;μ̂j ,θ̂j)

Strictly dominant Weak

Table 1: Comparison of the two mechanisms discussed in this paper

Theorem 3.2 In the sum of others’ plus max mechanism,
truth telling is strictly dominant.

Proof The maximum score is a constant value set by the
mechanism designer. Furthermore, the agent’s report is ex-
cluded from the calculation of the savings made. This re-
sults in the agent being unable to affect the savings made
by the other agents. Consequently, the savings made by the
other agents are, in effect, a constant. Given that, the sum of
others’ plus max rule is simply an affine transformation of
the spherical scoring rule, which maintains strict propriety
and therefore incentive compatibility. The fact that the score
is strictly proper means that the expected score is a unique
maximum when an agent reports truthfully. Therefore the
expected reward an agent receives is also a unique maximum
when the agent reports truthfully, and thus the mechanism is
strictly dominant incentive compatible. �

There are several advantages to using the sum of oth-
ers’ plus max mechanism over the simple uniform one pre-
sented earlier. Firstly, truth telling strictly dominates all
other strategies, as such agents need not compute their utili-
ties over the whole strategy space but can simply report their
true estimates. Moreover, each agent will maximise his ex-
pected utility by truthfully reporting his estimate to the ag-
gregator regardless of the other agents’ actions. This is not
the case in the uniform mechanism wherein truth telling is
only a Nash equilibrium. For example, if one agent were to
learn that its neighbour were to misreport its estimate, it too
could misreport in order to offset the other agent. However,
a disadvantage of sum of others’ plus max compared to the
uniform mechanism is that it is only ex interim individually
rational for the aggregator – a weaker concept than the ex
post individual rationality exhibited by the uniform mecha-
nism. That is, in the sum of others’ plus max mechanism,
when the home agents are reporting truthfully the aggrega-
tor will in expectation make a profit. However, individual
instances may occur in which the aggregator makes a loss
through using the agents’ information. The sum of others’
plus max mechanism will also rarely distribute 100% of the
allocated savings to the home agents – the total amount it
distributes is dependent on each agents’ score. In these in-
stances, any undistributed savings are simply kept by the ag-
gregator.

4 Empirical Evaluation of Mechanisms

In generating their estimates, the agents incur some cost that
is proportional to the precision of the generated estimate.
Agents can strategise over both the actual precision of their
estimate, θi, and the precision they claim their estimate to
be when reporting it to the aggregator, θ̂i. Agents can also

strategise over misreporting μ̂i. However, as shown in the
previous section, the uniform and sum of others’ plus max
mechanisms are incentive compatible and therefore rational
agents will always truthfully report their estimates (x̂i =
xi). Nevertheless, the actual precision of the estimates the
agents generate will determine their expected utility, and the
choice of precision is dependent on the choices of the other
agents. Thus, in this section we calculate the equilibrium
choice of which precision to generate made by the agents.

To achieve this, we simulate a microgrid consisting of
100 houses (each with one home agent) with cost coeffi-
cients, αi distributed uniformly between 0.5 and 1.0; and
an aggregator agent. We then use iterated best response to
find the equilibrium strategy of the agents. To do so, each
agent chooses a strategy (precision) that maximises its util-
ity given the strategies of the other agents in the previous
iteration. In the first game, the agents’ knowledge of the
other agents’ strategies is initialised to θ̄ = 10. Note that
this does not describe the real setting, but rather, the com-
putational algorithm we use to find this equilibrium point.
In order to aid convergence to a single, pure strategy as op-
posed to a cycle, each agent takes turns to set its strategy
as in the alternate-move Cournot dynamic (Fudenberg and
Levine 1998, pp.10). Each agent assumes that the other
agents’ strategies are fixed and that the agents will always
report the same precision as they had done in the previous
game. The agent then chooses its precision by analytically
maximising the agent’s expected utility function, given by:

Ū
(
θ̂i, θ̃−i, θa,i, θa,−i

)
=

∫∫ ∞

−∞
P (x̂,xa,ω)− c(αi, θi)

· N (ωi;μi, θi) · N
(
ω−i;μ−i, θ̃−i

)
dωi dω−i

where P is a reward function defined in Section 3. Sim-
ilar experiments were performed with a range of numbers
of houses, N . These yielded similar results, although the
benefit of the sum of others’ plus max mechanism over the
uniform mechanism reduces as N decreases.

The consumption, ωi of each agent, i, for each trial is uni-
formly, randomly distributed over the range [30, 50]. In each
trial of every iteration, the precision, θi, of the estimate the
agent generates is determined as above, and the mean, μi,
drawn from the Gaussian distribution by μi ∼ N (ωi, θi).

Figure 1 shows the mean of the sum of utilities attained
by the home agents for simulations whereby the aggregator
chooses to allocate a fraction λ ∈ {0.0, 0.1, 0.2, · · · , 1.0}
of the savings made to be used to repay the agents for their
information. Also plotted is the maximum possible utility
for any mechanism as the agents’ costs tend to zero and
their precision tends to infinity. This is calculated by di-
viding the maximum savings the aggregator can make – the
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Figure 1: The sum of the home agents’ utilities plotted
against the aggregator’s utility.

cost of electricity the aggregator would have incurred had it
used its own belief minus the cost of electricity had it bought
the exact correct consumption in the forward market. These
savings are then divided between the aggregator and home
agents’ in accordance with λ. This gives us an upper bound,
and a method by which to compare the two mechanisms.

We can see from Figure 1 that the sum of others’ plus max
mechanism is more efficient than the uniform mechanism in-
sofar as it is closer to the upper bound on utility than the uni-
form mechanism. This can be explained using the shape of
the agents’ utility functions under both mechanisms. When
strategising over the precision with which to generate a re-
port, the peak expected utility is at a higher precision in the
sum of others’ plus max case than in the uniform case. This
results in agents choosing to generate reports of higher pre-
cision, therefore resulting in the aggregator making greater
savings from their reports. Figure 2 further confirms that the
sum of others’ plus max mechanism is incentivising agents
to choose to generate reports of a higher precision. It can be
seen that, for 100 agents, the uniform mechanism provides
little incentive for agents to increase the precision of their
reports. In this case, the increase in savings from an agent
providing a report of higher precision, when divided equally
among the 100 agents, is outweighed by the extra cost in-
curred by that agent. However, in the sum of others’ plus
max mechanism, when generating a report of higher preci-
sion, the agent’s expected payment is not only increased due
to the increased expected savings, but also it’s increased ex-
pected score. The error bars in Figure 2 – showing standard
error – also show that the fraction of the savings made by
the aggregator that is paid to agents is variable. This results
from the use of the spherical score in calculating the fraction
of the savings to allocate to agents and the fact that agents’
beliefs are not 100% accurate, and have finite precision.

5 Conclusions

This paper discussed mechanism design for information ag-
gregation for aggregated demand prediction in the smart
grid. A model of aggregated demand prediction was pre-
sented in which an aggregator rewards a group of home

Figure 2: The precision of the estimates made by the agents
for the uniform and sum of others’ plus max mechanisms.

agents for probabilistic estimates of their future consump-
tion. A novel mechanism named ‘sum of others’ plus max’
was presented, which employs the spherical scoring rule
to achieve incentive compatibility. It was shown that truth
telling in this mechanism is strictly dominant, as agents
uniquely maximise their expected reward when truthfully
reporting, regardless of the other agents’ actions. This was
compared to a simpler mechanism whereby the savings are
equally divided amongst agents, and was shown to result in a
greater social welfare and a greater utility for the aggregator.

Future work will investigate the use of estimates from a
subset of the home agents in order to predict the consump-
tions of the missing agents when the aggregator cannot af-
ford to buy reports from all agents.
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