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Abstract

This work details methods for visualizing and brows-
ing a set of distributions of locational data derived from
multi-modal analysis of a large video and audio dataset.

Introduction
The Human Speechome Project corpus (Roy 2009), (Roy et
al. 2006) is a typical large, unstructured dataset. Undertaken
with the goal of understanding child language acquisition,
the Human Speechome Project (HSP) resulted in approx-
imately 230,000 hours of multi-channel video and audio
recorded in a typical home environment over the course of
3 years. This raw data has since been processed, resulting
in a corpus of 6,401,748 tokens of transcribed speech
and 189,862,525 points representing the tracked locations
of people in the video. This processed data accounts for
approximately 60% of total recorded audio and near 100%
of video. Due to the size of this dataset and its unstructured
nature, analysis and exploration requires efficient, scalable
methods.

Here we describe methods for tying location data to
transcripts, resulting in spatial distributions for various
cross sections of speech. We describe visualizations for
these distributions and some ways in which these visu-
alizations might be used for analysis. We then describe
an interface that has proven useful in working with these
distributions based on their statistical properties.

Dataset
One of the current areas of analysis of the HSP corpus is
in understanding “spatial grounding,” or the ways in which
language is tied to particular locations. Language develop-
ment may be related to the activity contexts in which that
language occurs (Bruner 1985), and the locational proper-
ties of speech in the home are a useful proxy for this context.

In order to analyze spatial grounding, a set of spatial
distributions is derived as follows. 2D histograms are
initialized where the bins correspond to discrete locations
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in the home. Bins are square with sizes ranging from
100mm to 1000mm on a side, and are distributed uniformly
throughout the space. For 100mm bin sizes, distributions
contain 162 x 118 = 19,116 bins. The 1000mm distributions
contain 16 x 11 = 176 bins.

For each utterance of interest, the set of points corre-
sponding to the location of people at the time of that
utterance are added to the appropriate bin(s) of the his-
togram using bilinear interpolation. Each bin is given
a weight corresponding to the amount an artificial bin
centered at the point would overlap with the bin in question.
A weighted point is then added to each bin. Note that by
this method, at most 4 bins can be affected by a single point
and a point that falls directly in the center of a bin affects
only that bin.

Spatial histograms can be thought of as multinomials
with the added property that bins have spatial adjacencies,
where k = the number of bins and n = the number of
samples (in this case utterance points). The probability of
an utterance occurring at a location i is the total count of
points in i = Xi divided by the total number of points n:
pi =

Xi

n and
∑k

i pi = 1.

The histograms described above were derived for all
utterances in the home, and then were further segmented in
a variety of ways. In particular, utterances containing 658
“target words” were derived, corresponding to the words
in the child’s vocabulary at age two. These target word
distributions were then further segmented by utterances
occurring before the child’s first production of a given word,
and those after. Finally, all histograms were segmented
into those representing each person of interest in the home
(including the mother, father, nanny, and child). These
histograms taken together form a hierarchical taxonomy
where one can examine spatial properties of speech at a
variety of levels of granularity and along various dimensions
of interest.

Visualization
Several visualization types were initially created from the
spatial distributions. At the core are heat maps utilizing a
“rainbow” spectrum of color to represent the bin probabili-
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ties pi. These heat maps are normalized such that max(pi)
is depicted in white and min(pi) is black. These basic
heat maps are also extended to heat maps plotted on a log
scale, similarly normalized. The log scale versions are use-
ful for displaying more subtlety in cases where there are
many points and the range between minimum and maximum
counts is large.

Figure 1: Heatmap for the word “car”

Finally, difference maps are produced that visually represent
a distribution’s difference from the background. These maps
are derived by subtracting the likelihood of each bin in the
background distribution P from each bin in the candidate
distribution Q:
D(P,Q) = qi − pi ∀i

Results might therefore be negative, with positive numbers
reflecting bins where the candidate distribution is more
likely than the background. A modified color spectrum is
used in these difference maps where zero is still depicted
in black, but positive numbers utilize the warmer end
of a rainbow spectrum (red, orange, yellow, and white)
and negative numbers are depicted in cooler colors (blue,
green). This formulation creates an intuitive depiction,
while allowing quick differentiation between positive and
negative values.

Analysis
There are many ways in which a researcher might select a
set of words to focus on from the larger set of 658 target
words. For example, one might like to compare the ways in
which noun usage differs from verb usage, or might instead
prefer to focus on words that the child learned first. In the
current work, the goal was to find words whose usage was
focused in one or more discrete locations.

Given a set of interesting words, the next step in anal-
ysis is to find words that are similar (or contrasting) to the
initial set in their spatial properties. To that end, we might
examine these words’ spatial distribution heat maps in order
to look for clues as to their relationship. As an example,
a word that became a focus because of related research
was “car.” The usage pattern for “car” differs significantly

from the overall speech pattern in the home; a difference
that shows up immediately in the difference map depicted
in Figure 2 - the area near the window in the family room
appears as bright yellow and orange, with the rest of the
house being primarily blue, black, and green. The highly
localized usage pattern evident in the difference map led us
to search visually for other similar patterns, revealing words
that were localized in similar ways (but in different areas of
the home) to “car.”

Figure 2: Difference map for “car”

Distribution Browser
Given the insights from visual analysis, the next task is to
find statistical measures that describe these differences. A
multitude of applicable measures are available, as well as a
huge variety of techniques and variations for applying each
measure. A few examples that have been explored are en-
tropy, KL-divergence, and Bhattacharyya distance, with the
latter two being measured against the background. Spatial
measures including Ripley’s K (Dixon 2002) and Moran’s
I (Moran 1950) have been explored as well. Because of
the size of the search space for useful measures and the
complexity of the dataset, strictly numerical analysis can
prove cumbersome and unintuitive. Visualization provides a
useful alternative approach.

The localized usage patterns described above can be
seen in the difference maps even in very low resolution
images, implying that these sorts of differences could be
drawn out by looking at aggregate views of all distributions
where each distribution is rendered at a small size. As
a result of this observation, an approach was devised as
follows. All spatial distributions are visualized as small,
iconic heat maps. These icons are arranged from top left
to bottom right according to a user-specified criteria (i.e.
alphabetical). We then apply a statistical measure (i.e.
KL-divergence) to each distribution, generating a score
for each. Icons are then darkened according to this score.
The user can choose to visualize the scores in ascending
(low scores are brighter) or descending (high scores are
brighter) order. Additionally, the user can choose to filter
the distributions by this score, showing, for example, only
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the top 50 scoring distributions.

Users can switch seamlessly between the various sta-
tistical measures, the ordering direction (ascending or
descending), and the amount of filtering. The user can also
choose to more closely examine any individual distribution
in standard, log, or difference form. Additionally, an ordered
list is provided for each measure that shows a total ordering
of the target words based on the currently selected measure.

One can quickly get a sense of the shape of the distri-
bution over the measure being examined. For measures that
provide good separation between spatial distributions, the
user sees a uniform spread between dark and light icons.
For a measure that clusters distributions toward one end of
the scale, however, the user will see an even distribution in
the dark (or light) part of the range, and just a few icons at
the other end of the range.

As an example of the above effect, a particular mea-
sure gives a numerical score to “car” of .90. The next word,
“diaper” scores .68. There are 15 words scoring between .02
and .50, and 408 words between 0 and .02. It is clear that
most words have low scores, some have higher scores, and
“car” is an outlier at the top of the scale. These properties
are apparent when viewing the browser, as sorting in
ascending orders shows nearly all icons as very bright, with
just a few appearing dark, and “car” being black. Sorting in
descending order is equally informative, as “car” appears
very bright, several icons are less bright, and most icons are
dark or black.

The browser allows the researcher to make informed
decisions about the best statistical measure to use in order
to select desired distributions. In the example of “car,” we
were able to cycle through many measures quickly, noting
in each case the position of “car” along the continuum from
dark to light. We were similarly able to look for measures
that highlighted words with similar spatial properties (in
this case, words whose difference maps appeared tightly
clustered in a particular location). As a result, we were able
to conclude that the Ripley’s K statistic selects the desired
spatial distributions. We could then use this measure to
automatically sort the 658 target words, as well as any of
the 26,000 other words in the corpus’ vocabulary.

Additional benefits are realized when we consider the
ordering of the icons as a second dimension by which to
view distributions, with darkening and lightening as the
first dimension. An important current area of interest is in
finding spatial information that is predictive of the age at
which the child first acquires a given word. To that end, we
seek measures that are correlated with age of acquisition. In
order to perform this search, we first order the distributions
by age of acquisition, and then apply some measure. If
correlation is high, we expect to see a smooth transition
from dark (or light) at the top left to light (or dark) at the
bottom right. Such a transition implies that measure values
are varying with age of acquisition. Figure 3 shows such an

ordering for 120 words, with KL-divergence applied. We
can see that KL-divergence values tend to be lower at the
top left (distributions are darker) and higher at the bottom
right. Although correlation is not perfect (r = 0.58), we can
get a quick sense of the appropriateness of the measure. We
can also quickly find outliers, or those distributions that are
poorly predicted by looking for discontinuities in shading.
For example, notice that “round” is far brighter than would
be appropriate given its position in the matrix.

Figure 3: Distribution Browser

Conclusion
This work exemplifies a methodology that seamlessly blends
the strengths of computation with those of the human op-
erator, with visualization as the primary catalyst. We pro-
duce a set of abstract data structures (spatial distributions)
by distilling a large multi-modal dataset (HSP tracks + tran-
scription). We then choose a focus from these data structures
based on research goals. By examining the visualizations re-
lated to this focus (both those that exemplify it and those
that run counter to it) we can begin to discern patterns. We
then shift back to looking at the full set of distributions via a
distribution browser, attempting to find statistical properties
that create an ordering of the distributions that align with the
research focus. These properties can then be used at scale in
order to generate new foci as well as to provide data points
for further research efforts.
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