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Abstract

Consider an embedded agent with a self-modifying, Turing-
equivalent policy that can change only through active self-
modifications. How can we make sure that it learns to contin-
ually accelerate reward intake? Throughout its life the agent
remains ready to undo any self-modification generated during
any earlier point of its life, provided the reward per time since
then has not increased, thus enforcing a lifelong success-
story of self-modifications, each followed by long-term re-
ward acceleration up to the present time. The stack-based
method for enforcing this is called the success-story algo-
rithm. It fully takes into account that early self-modifications
set the stage for later ones (learning a learning algorithm), and
automatically learns to extend self-evaluations until the col-
lected reward statistics are reliable... a very simple but general
method waiting to be re-discovered! Time permitting, I will
also briefly discuss more recent mathematically optimal uni-
versal maximizers of lifelong reward, in particular, the fully
self-referential Gödel machine.

Note: This is a summary of earlier work (Schmidhuber 1994;
Schmidhuber, Zhao, and Schraudolph 1997; Schmidhuber
1987; 1993; Wiering and Schmidhuber 1996; Schmidhu-
ber, Zhao, and Wiering 1997; Schmidhuber and Zhao 1997;
Hutter 2005; Schmidhuber 2006; 2005; 2009).
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