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Abstract

Frustration has been generally viewed in a negative light
and its potential role in learning neglected. We pro-
pose a new approach to intrinsically motivated learning
where frustration is a key factor that allows to dynam-
ically balance exploration and exploitation. Moreover,
based on the result obtained from our experiment with
older infants, we propose that a temporary decrease in
learning from negative feedback can also be beneficial
in fine-tuning a newly learned behavior. We suggest that
this temporal indifference to the outcome of an action
may be related to the sense of control, and results from
the state of elation, that is the experience of overcoming
a very difficult task after prolonged frustration. Our pre-
liminary simulation results serve as a proof-of-concept
for our approach.

Human infants are born with a tremendous amount of in-
trinsic motivation to explore the properties of their own bod-
ies and the nearest surroundings. This motivation is aimed
primarily towards actions whose results are immediately ob-
servable. The contingency between actions and their results
can be rewarding and encourages to continue those valu-
able actions. Disruption of a learned contingency between
behavior and reward leads to negative emotional reactions,
even if rewards are still delivered but are not dependent on
infants’ actions. These negative emotional reactions, com-
monly known as frustration, have been generally viewed in
a negative light. The hypothesis proposed by Wong (Wong
1979), that an optimal level of frustration leads to explo-
ration and faster learning, has not found much attention from
the scientific community.

On the other hand, many models of intrinsic motiva-
tion for artificial learning systems found their inspiration in

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Berlyne’s famous monograph Conflict, Arousal, and Curios-
ity (Berlyne 1960). In there, exploration or information seek-
ing has been greatly considered as a primary source of moti-
vation. Thus, a significant number of models driven by nov-
elty (Weng 2002; Barto, Singh, and Chentanez 2004; Mar-
shall, Blank, and Meeden 2004), and curiousity (Schmid-
huber 2010) has been proposed. The basic concept behind
curiosity-driven models is that artificial agents are inter-
ested in learnable but yet unknown regularities and get bored
by both predictable and inherently unpredictable things (eg.
white noise). The mismach between expectations and reality
is translated into curiosity rewards, which propels agents to
actively create surprising events in the environmnet and thus
learn novel patterns.

More recently a new computational approach to intrin-
sic motivation that is based on competence has been sug-
gested (Baranes and Oudeyer 2010). In this framework, an
agent sets up a ”challenge”, that is a self-determined goal
associated with measures of difficulty and measures of ac-
tual performance. Herein, interesting learning challenges are
those which promise the largest learning progress based on
the agent’s current level of competence.

In this paper, we also suggest a competence-based ap-
proach with the important difference that task performance
does not affect which of several possible tasks should be se-
lected, but rather how exploration and exploitation should be
balanced while learning one particular task. The advantage
of our method is that it changes this balance dynamically
based on the level of competence of the agent. We propose
to use a notion of sense of control that, in our understand-
ing, is one’s subjective sense of the capacity to successfully
perform a desired action, fulfill the individual personal goals
and desires, or instinctual drives and needs. A lack of such
an ability causes the feeling of frustration, and decreases the
overall sense of control. On the other hand, the experience of
overcoming a very difficult challenge after prolonged frus-
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tration due to many trials and errors may result in an increase
of one’s sense of control. Therefore, frustration and sense of
control are inversely related. In line with Wong’s sugges-
tion (Wong 1979), we assume that a medium (optimal) level
of frustration leads to more explorative behavior, while low
levels lead to exploitation.

The next section introduces basic concepts of our experi-
ment with older infants along with a short discussion on the
main finding from this work. In section III, we present our
synthetic approach for designing an intrinsically motivated
system. Section IV introduces basic concepts of our first ap-
proach to a model implementation and provides the details
of our experiment with a simulated robot. We close the paper
with conclusions and discussions of follow-up research.

Observation data
The primary motive for our experiment was to see how in-
fants’ knowledge about their own body capabilities changes
with the acquisition of new motor skills. A reaching action
was a good candidate for our test, as to sucessfully perform
this action infants need to know not only the distance to the
object, but also how far they can reach and lean forward
without losing balance. Infants master this skill quite early
in their development. As we were interested in how body
perception changes with age, our experimental group con-
sisted of 9-month-old infants (N=8) and 12-month-old in-
fants (N=8). The basic setup of the experiment is shown in
Fig. 1. The procedure of the experiment was like the fol-
lowing (for the details please refer to (Grzyb, del Pobil, and
Smith a)). Infants were seated in a specially adapted car seat
with the seatbelts fastened for security reasons. In order to
keep infants engaged and attentive during the entire experi-
mental session, a colorful stimuli display was placed in front
of them. The colorful display also helped in separating the
experimenter from the infants, making communication be-
tween infants and the experimenter impossible. A ball at-
tached to a wooden dowel appeared through the opening
of the frame at various distances (30, 37, 47, 60, 70 cm).
The sequence of trials consisted of 9 distances and always
begun and ended with two trials at close distances to keep
infants motivated. The order of distances in the middle of
the sequence was chosen pseudo-randomly. The sequence
of distances was repeated up to three times. There was no
explicit reward provided to the infants after the trial for any
tested distance. This helped us to avoid situations where in-
fants could learn to make reaching movements just to com-
municate their interest in obtaining a reward. The entire ex-
perimental session was recorded with two cameras. These
recordings were subsequentally viewed and infants’ behav-
ior scored.

The results of the experiments showed that 12-month-old,
but not 9-month-old infants constantly reached for the out-
of-reach objects, which was quite surprising as typically we
would expect older infants to know more than younger ones.
As 12 months is the age around when the transition to walk-
ing occurs, we decided to extend our experiment and recruit
more infants depending on their walking abilities (Grzyb,
del Pobil, and Smith b). We segregated 12-month-old in-
fants into three groups: non-walkers (N=8), walkers with

Figure 1: Experimental setup.
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Figure 2: Mean percentage of reaches to far objects (60cm)
for 12-month-old infants: not able to walk (navy blue), able
to walk with help (light blue), or able to walk without help
(yellow), and 9-month-old infants (red). Please notice that
we use the term ”time” here, and that these are not con-
secutive trials. There are several trials to various distances
between the first and the second time presented for a given
distance.

help (N=8), and walkers without help (N=8). To see how
reaching for far objects changes during the experimental ses-
sion, we calculated the mean percentage of reaches for far
distances for every sequence of trials. Fig. 2 shows the re-
sults for 60 cm distance. For comparison we also provide re-
sults for 9-month-old infants. It can easily be noticed that all
12-month-old infants reached for the out-of-reach object the
first time, but only walkers (with or without help) continued
reaching the second time and the third time. The probabil-
ity of reaching, however, slightly decreased the third time,
which may suggest that walkers indeed learn what is within
their reachable space, but the learning rate in their case is
much lower than in the case of non-walkers and 9-month-
old infants.

In our opinion, such a slow rate of learning what is reach-
able or not, makes infants excercise more their walking be-
havior, as a primary motive for walking is to reach for some-
thing. It is possible that if infants learned faster what is
within their reachable space there would be less incentive
for mastering further walking behavior.

11



Figure 3: The dynamics of balancing between exploration
and exploitation based on the level of frustration

Our approach

We favor a synthetic approach that brings together expla-
nation and design theory and is expected to fill the gap be-
tween existing disciplines instead of staying in one closed
discipline, to further our understanding of human cognitive
development (Asada et al. 2009).

The basic premise of our approach is that a need for con-
trol is innate, and exercising control is extremely rewarding
and beneficial for an individual’s wellbeing (Leotti, Iyen-
gar, and Ochsner 2010). People’s ability to gain and main-
tain a sense of control is essential for their evolutionary sur-
vival (Shapiro, Schwartz, and Astin 1996). The concept of
sense of control in our work was introduced in the introduc-
tion. Fig. 3 shows the dynamics of balancing between ex-
ploration and exploitation that is tightly related to frustration
and therefore inversely to the sense of control. The level of
frustration increases when a selected action is no longer re-
warding. An optimal level of frustration favours more explo-
rative behavior. Prolonged frustration may result in two dif-
ferent states. When a new action that is rewarding has been
found it leads to a state of elation, that is characterized by
a sudden decrease of frustration. On the other hand, when a
new action has not been encountered, prolonged frustration
will lead to a state of learned helplessness.

Frustration and exploration

The timing of infants’ transition to upright locomotion was
associated with temperament (Scher 1996). More specif-
ically, earlier walkers become more easily frustrated and
stressed when physically constrained. They also reveal more
persistence in reaching a blocked goal as compared to later
walkers during the transition to walking (Biringen et al.
2008). We suggest that being easily frustrated could be
caused by the perception of limits of self-efficacy. As sug-
gested by Zelazo (Zelazo 1983) 12-month-old infants are
more skilled in making associations, and that may stimu-
late their interest in distant objects. The failures in obtaining
these new challenging goals may significantly decrease in-
fants’ sense of control, increasing at the same time their level
of frustration. In our opinion, growing emotional distress as-
sociated with a decreasing level of control in pre-walking
infants can trigger the process of exploration. Fustration-

motivated exploration, as proposed by Wong, may play the
function of widening the scope of an agent’s response re-
portoire (Wong 1979). Although our observational data do
not allow us to perform an exact analysis of variability of
infants’ reaching trajectory, we observed that pre-walkers
slightly more than other groups of infants use their left, right,
or both hands. We speculate that infants before the transition
to walking may vary their reaching behavior more.

In classical reinforcement learning, one possibility for
the agent to choose an action is a softmax action selection
rule (Sutton and Barto 1998):

Pt(a) =
eQt(a)/τ

∑n
b=1 e

Qt(b)/τ
; (1)

where Pt(a) is a probability of selecting an action a, Qt(a)
is a value function for an action a, and τ is a positive pa-
rameter called the temperature that controls the stochasticity
of a decision. A high value of the temperature will cause
the actions to be almost equiprobable and a low value will
cause a greater difference in selection probability for actions
that differ in their value estimates. The parameter τ is usu-
ally fixed. For an adaptive agent, however, this parameter
should be flexible in order to dynamically regulate the bal-
ance between exploration and exploitation. We suggest that a
level of frustration, that reflects the agent’s sense of control,
could be used in the softmax choice rule instead of the pa-
rameter τ . It has been shown that frustration leads to higher
levels of noradrenaline in the right amygdala (Young and
Williams 2010). Thus, our suggestion seems to be consis-
tent with Doya’s proposal (Doya 2002) that noradrenaline
may control the temperature τ .

Elation and fine-tuning

The newly walking infants are described as ”euphoric” in
relation to the first steps away from their mother (Biringen
et al. 1995). The experience of overcoming a prolonged state
of frustration that was caused by an inability to reach for a
desired distant object results in an extremely high level of
sense of control. We call such a state elation, and relate it to
a sudden decrease of frustration. As our experimental data
suggest such a state may contribute to a decreased ability
of learning from a negative feedback. In our opinion, the
temporary omission of errors plays an important role in fine-
tuning a newly acquired behavior.

As the result of our experiment suggested, low learning
rate may be helpful in fine-tuning the newly learned behav-
ior. In temporal difference reinforcement learning a value
function Vt is updated after each choice has been made, ac-
cording to the following formula:

Vt+1(ct) = Vt(ct) + αv ∗ δt; (2)

where Vt is a value function, ct a set of options, αv is a
free learning rate parameter and δt is the difference between
the received and expected reward amounts. This formula has
been adapted from (Beeler et al. 2010), for a detailed de-
scription of temporal difference learning algorithm please
refer to (Sutton 1988).

We propose here that the free learning parameter αv can
also be flexible. The state of elation, that is triggered after
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(a) Maze M1

(b) Maze M2

Figure 4: The mazes used in our testing scenario. The green
square indicates the start and the red circle the destination.

the agent makes a discovery following a period of prolonged
frustration, should temporarily decrease the learning rate.

Learned helplessness

Consistend and repetitive lack of reward will lead to an
extremely high level of frustration, which if not overcome
should eventually result in a feeling of helplessness and
depression. Although such a state is not desirable for the
agent’s benefit, it might serve as an good indicator for se-
lecting a less challenging goal. In order to re-gain its sense
of control, the agent should lower its expectations and at-
tempt to practice less demanding tasks.

Simulation and results

As discussed in the previous section, a sense of control may
play an important role as a possible mechanism for regulat-
ing the intrinsic motivation for learning. Two different sim-
ulation scenarios were used to test whether the frustration
dynamics could lead an agent to more adaptive behavior.

For the purpose of our simulations, frustration was rep-
resented as a simple leaky integrator. We chose the leaky
integrator model because it captures the dynamics of a rapid
rise in frustration level and also the possible rapid decrease
over time if no input is provided:

df/dt = −L ∗ f +Ao (3)

where f is the current level of frustration, Ao is the outcome
of the action and L is the fixed rate of the ’leak’ (L = 1 in
our simulations).

Frustration and exploration

We used a non-stationary environment to test whether frus-
tration can actually lead to more adaptable behavior. The
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Figure 5: A comparison of the performance for different Q
learning agents. The change of maze was at epoch 80.

experimental setup was similar to the one used in (Zhang
and Pan 2006). The simulation started in a form of 7-by-7
Maze M1 (Fig. 4a), and after 80 learning epochs, the maze
changed to M2 (Fig.4b). We compared the performance of a
general reinforcement learning agent with an agent equipped
with the frustration module. The learning algorithms were
based on the standard Q-learning algorithm. The Q values
were updated as follows:
Q(st, at) = 0+ γ ∗ V (st+1), for successful state transition,
Q(st, at) = −0.5 + γ ∗ V (st+1), if the agent bumped into
the wall, where V (st+1) = maxa Q(st+1, a), and γ = 0.99.
When the agent reached the destination point, a reward of 10
was received. A Boltzmann action selection was used. The
Boltzman temperature was initialized to 9, and discounted
by 0.9 at each time step.

In case of the frustration agent, the outcome of a state
transition (Ao) was fed into its leaky integrator as follows.
Ao = 10, when the goal has been reached, Ao = −0.5 when
an agent bumps into the wall, Ao = 0.1 in any other condi-
tion. Herein, the level of frustration also built up for sucess-
ful transitions. In this way we could optimize the length of
the trajectory from the starting position to the goal posi-
tion. The current level of frustration was used directly as
a Boltzman temperature in the Bolzmann action selection
process. The duration of the simulation was 140 epochs. In
each epoch, the number of steps taken for the agent to reach
the destination was recorded. If the agent failed to reach the
destination in 5000 steps, the epoch terminated and the num-
ber 5001 was recorded.The results of the simulation are pre-
sented in Fig. 5. These two Q agents differed in their lower
range of the exploration temperature (infT ). As it can eas-
ily be seen the agent with infT = 0.001 could not adapt to
the environmental changes. Due to its relative small degree
of exploration, after change of the maze the agent could not
reach the goal position. Only keeping the infT at the opti-
mal level 0.05 allowed the agent to relearn the correct path
to the destination. The agent with frustration also was able
to adapt to the new changes in the environmnent, and did it
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Figure 6: The dynamics of global frustration

slightly faster than the Q agent.

Elation and fine-tuning

The results from our infant study suggested that the state of
elation may be helpful in fine-tuning newly learned behav-
ior. In this simulation we roughly test how sense of control
could influence the decision making process. The goal for
the simulated humanoid robot, similarly to our infant experi-
ments, was to decide if the object is reachable or not depend-
ing on its previous experience. The whole experiment con-
sisted of several sessions. Each session always begun with
high probability of reaching for any object. During an ex-
perimental session the robot updated its prediction of object
reachability based on the reaching outcome and its current
level of sense of control. At this point, the level of frustra-
tion was artificially reset in order to simulate the transition
to walking.

The robot was equipped with a ”know-how” module that
was responsible for performing the reaching action (an an-
alytical inverse kinematics solver). After each session, the
reaching prediction error was updated according to the fol-
lowing formula:

Pe(t+ 1) = Pe(t) + (Pe(t)−Ao) ∗ Ef ; (4)

where Pe stands for the prediction error, Ao actual result
of the action, and Ef is a function of frustration defined as
follows:

Ef = 1− exp(−
f

2
); (5)

f is the current level of frustration. This function was se-
lected mainly because it gives low values for low level of
frustration, and it rapidly approaches 1 for increased values
of frustration. The low values given by this function will re-
sult in less error to be taken into account during updating the
prediction Pe of the future errors, but will leave the amount
of error almost unchanged for optimal and higher values of
frustration.

The experiment started with the robot being in an optimal
level of sense of control that resembles a state of 12-month-
old infants far from the transition period to walking. We as-
sumed here an increased interest of the robot in the distant
object, and for that reason each experimental session always
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Figure 7: Reaching prediction for the out-of-reach object.

begun with high probability of reaching. During the whole
experiment the global level of frustration was increasing as
a result of non-rewarding reaching behavior. The dynamics
of frustration is shown in Fig. 6 where two different stages
of sense of control are marked, the first one corresponds to
the optimal level of frustration (blue) and the second one to
the extremely low level of frustration (red), that comes af-
ter overcoming the prolonged frustration. As it easily can
be noticed in Fig. 7, the robot being in the optimal level of
sense of control, after two unsuccessful trials learned that
the object was not reachable and gave up on trying to reach
for it. On the other hand, the robot in a state of overconfi-
dence (elation) needed more repetitions to correctly predict
the outcome of its action. The behavior of the robot in this
stage resembles the behavior of the infant right after the tran-
sition to walking, when she persistently continues to reach
for unreachable objects. Thus, the state of elation, that is
characterized by a low level of frustration, leads to a tem-
poral decrease in learning rate. That as we suggested previ-
ously may help infants practice more their newly acquired
walking behavior.

Discussion and future work

The shortage of experimental studies concerning intrinsi-
cally motivated learning has been pointed out by Kaplan and
Oudeyer (Kaplan and Oudeyer 2007). The results obtained
from our experiments with infants could be the first step in
filling in this gap. Although our infant study suggested a
possible mechanism behind infants’ learning to walk, we be-
lieve that it can be extended to a more general form of intrin-
sically motivated open-ended learning. The main issue that
needs to be addressed first is how walking and reachability
are tied tied together in a larger learning framework. The an-
swer to this question could shed light on a more general form
of existing relationship between different behaviors and on
the process of their acquisition. Another important issue to
address is whether a sense of control could serve as a meta-
parameter of intrinsic motivation for reinforcement learning.

The preliminary simulation results seem to confirm the vi-
ability of our approach. The next step in our research is to
perform a series of experiments with a real humanoid robot.
The reaching in our simulation was performed by an analyt-
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ical inverse kinematic controler that excluded the possibility
of online learning. As it seems that an optimal level of frus-
tration leads infants to more explorative behavior, we should
introduce variations in robot reaching attempts depending on
its level of frustration. The robot will have several built-in
behaviors, like for example a stepping reflex. As an upright
posture is very unstable a constant reaching from this new
posture will result on many occasions in a loss of balance.
A step made by infants in order to recuperate the balance
can trigger the process of learning to walk. We hypothesize
that the discovery of a solution that brings the desired goal
closer, rapidly decreases the level of frustration, and boosts
up the level of control. The state of high level of self-efficacy
causes the errors to be omitted until the newly learned skill
has been mastered. In this way we believe that our model
for the mechanisms that balance exploration and exploita-
tion could trigger learning to walk in a robot.

Conclusion

This paper presented a new approach to an important as-
pect of intrinsically motivated learning. Sense of control was
suggested to be a key factor that allows to dynamically bal-
ance exploration and exploitation while learning new skills.
The level of frustration also determines how much the neg-
ative outcome of an action is taken into account. Omission
of the errors while learning was suggested to be helpful in
fine-tuning a newly learned behavior. The plausibility of this
mechanism was tested using a simulated humanoid robot,
and our preliminary results qualitatively replicated the result
obtained from our experimental data.
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