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Abstract

We describe a framework for rapidly prototyping ap-
plications which require intelligent visual processing,
but for which reliable algorithms do not yet exist, or
for which engineering those algorithms is too costly.
The framework, CrowdSight, leverages the power of
crowdsourcing to offload intelligent processing to hu-
mans, and enables new applications to be built quickly
and cheaply, affording system builders the opportunity
to validate a concept before committing significant time
or capital. Our service accepts requests from users ei-
ther via email or simple mobile applications, and han-
dles all the communication with a backend human com-
putation platform. We build redundant requests and data
aggregation into the system freeing the user from man-
aging these requirements. We validate our framework
by building several test applications and verifying that
prototypes can be built more easily and quickly than
would be the case without the framework.

1 Introduction

Mobile applications that make use of visual sensing are a
promising future afforded by cheap cameras built into nearly
every mobile phone. Take a picture with one click, intel-
ligent processing occurs, something useful gets done. Ex-
amples of existing applications include business cards scan-
ners that populate a contacts database (BusinessCardReader;
BizSnap) and product scanners that search for reviews and
lowest prices (SnapTell; RedLaser; AmazonRemembers).
We hypothesize that there are many more such applications
and services which have yet to be imagined.

These applications are powered by computer vision algo-
rithms that process the images, e.g. the majority of the busi-
ness cards apps use Optical Character Recognition (OCR).
Taking the fully automated approach to building a system
with high intelligence requirements involves setting up a
development team with the appropriate expertise, spend-
ing several months developing the necessary algorithms and
models, gathering and analyzing training data, and validat-
ing and tuning the models to ensure that the system satisfies
user requirements. One problem with this approach is that
the primary hypothesis, that users actually want to use the
system, is only validated in the final stages of the develop-
ment process, after considerable development expense.

Another problem with developing fully automated com-
puter vision algorithms is there is often a mismatch between
expectations of robustness and what is actually obtainable.
For example, experiments with a business cards app revealed
that there is considerable variability in the quality of the re-
sults obtained, with some of the influencing factors being the
lighting quality of the photo and whether the user zoomed in
on the area of interest in the business card. In cases of low
quality results, the user is tasked with manually entering the
information, destroying the usefulness of the service. Unre-
liable results of this nature often cause the users to abandon
the application after a few tries.

Another approach is to employ humans in the computer
vision processing loop, reducing development costs and in-
creasing robustness. In recent years, we have witnessed the
emergence of platforms which enable the use of human in-
telligence to be injected into the execution pipeline of appli-
cations, Amazon Mechanical Turk being one such service
(AMT). However, the overhead to set up and use AMT from
a mobile environment is sufficiently high that most appli-
cation developers have not yet done so. Amazon itself is an
exception, having deployed a mobile application that utilizes
human labor for identifying products and providing a link
for purchasing the product on Amazon (AmazonRemem-
bers).

We introduce CrowdSight, a framework which makes it
as easy as possible to quickly prototype these kinds of ap-
plications requiring intelligent visual processing and where
the input into the system is a single static image. Our sys-
tem is a web service that takes requests from mobile appli-
cations or via email. The visual computation is performed
using AMT as a human computation engine. Crowdsight ab-
stracts as much of the processing and communication over-
head as possible, in order to simplify quickly prototyping
new ideas. A new service is defined on a single webpage and
consists primarily of instructions which explain what the hu-
man worker is supposed to accomplish. We expose various
parameters and presentation options used by AMT, but they
can frequently be left in a default state. The service provides
for redundant requests and result aggregation, and the “ser-
vice developer” need only specify the amount of redundancy
required to achieve acceptable robustness.

The primary contribution of this paper is a framework for
quickly prototyping new mobile applications requiring vi-
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sual processing. We support this contribution by testing our
framework through the development of several new services.
We hypothesize that by making it cheap and easy to pro-
totype such applications, the probability of identifying the
useful ones will increase simply by trying many of them.
We have developed several applications to validate that it
is easy and fast to deploy new services with our frame-
work. Our new services include: transcription, business card
reader, product search, and people counting. These services
are discussed in section 4.

2 Related Work

Development Tools for Human Computation: Research
on using human labor for computation is extensive, for a sur-
vey see (Quinn and Bederson 2010). Some researchers have
sought to raise the level of abstraction involved in develop-
ing human computation applications. For example, TurKit is
a toolkit for deploying iterative tasks to AMT, with an imper-
ative programming paradigm that uses turkers (AMT work-
ers) as subroutines (Little et al. 2009). The toolkit handles
the latency of HITs (AMT Human Intelligence Tasks), sup-
ports parallel tasks, and provides fault tolerance. There has
also been research on integrating human computation into
a database query language such that evaluation of specific
predicate operators would automatically expand into HITs
which would then be managed by the query processing en-
gine (Parameswaran and Polyzotis 2011). Another example
is QuikTurkit, which is a set of tools to decrease latency
when calling human computation routines (Bigham et al.
2010). All of these tools are targeted at developers and are
complementary to the role of CrowdSight, which is intended
to make prototyping a new mobile application as quick as
possible.

Mobile Apps using Human Computation: Crowdsourc-
ing has also been used to power mobile applications. Ama-
zon Remembers locates a web link to purchase products
the user photographs. mCrowd is an iPhone based mobile
crowdsourcing platform that enables mobile users to post
and work on sensor-related crowdsourcing tasks (Yan et al.
2009). mCrowd enables users to post tasks to AMT (such as
asking turkers to tag an image or to take a picture of some-
thing in particular), however, those tasks come from a fixed,
predefined set, built into the application. VizWiz is a talk-
ing application that enables vision-impaired users to take a
picture of a situation in life and ask a question about it to
workers in the cloud (Bigham et al. 2010). Many other appli-
cations and domains exist. CrowdSight is intended to allow
developers to quickly prototype and test new applications
and services.

3 System Architecture

CrowdSight is primarily a web application that simplifies
creating new services that rely on AMT on the backend. Fig-
ure 1 shows an overview of the system. Service developers
create new services in the web application. Once a service
has been created, end users can utilize it by submitting re-
quests from their mobile devices. End users simply need the

Figure 1: CrowdSight system overview. The system allows
mobile end-users to submit requests to the server app using
a mobile app. Service developers create new services using
the web UI. The workflow engine manages communication
with the crowdsourcing platform, Amazon Mechanical Turk
(AMT).

ability to email an image from their mobile devices. Alterna-
tively, we have developed a mobile application that provides
a more user-friendly experience and additional capabilities.
The CrowdSight engine processes requests submitted by the
end users; it handles communication with AMT, abstracting
away as many details as possible.

3.1 Web Application

Any new CrowdSight service requires both the primary de-
scription of what workers are supposed to accomplish as
well as a methodology to ensure robustness and quality.
Most AMT developers ensure quality through multiple re-
quests and worker result aggregation, which often involves a
secondary round of interaction with AMT. CrowdSight pro-
vides an abstraction for this process so that the developer
does not need to explicitly manage each of these tasks.
Creating a new service: Defining a service in CrowdSight
entails filling in a web form with a few parameters and
XML specifications of the HIT. Each service has a unique
ID which is used to specify which CrowdSight service is be-
ing interacted with (whether by email or through the mobile
application), as well as a few fields providing a title and de-
scribing the service.

AMT requires a set of parameters specified as a list of
key-value pairs for defining a HIT. It would be possible to
completely abstract this specification from CrowdSight de-
velopers for ease of use, however we have found that de-
velopers sometimes want to tweak these values after they
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title:Transcribe text in image
reward:0.05
assignmentduration:3600
qualification.comparator.1:greaterthan
qualification.value.1:25
qualification.private.1:false

Figure 2: Service properties definition. A list of key-value
pairs containing service specification details. The qualifica-
tion specifies a required approval rate of at least 25% for
potential turkers (AMT workers).

<QuestionForm>
<Question>
<QuestionContent>
<Text>Transcribe text in image:</Text>
</QuestionContent>
<AnswerSpecification>
<FreeTextAnswer>
<NumberOfLines>10</NumberOfLines>
</FreeTextAnswer>
</AnswerSpecification>
</Question>
</QuestionForm>

Figure 3: Question-Answer example. A HIT (AMT Human
Intelligence Task) can be specified declaratively using the
format specified by the Question-Answer schema definition.

have an initial version of their new service running. We com-
promise by providing an example set of default parameters
which most developers use initially, however they can also
edit the parameters if desired. A sample of basic HIT prop-
erties is included in figure 2.

The Question-Answer field is an XML document, an ex-
ample of which is shown in figure 3, that allows for a declar-
ative definition of the structure and presentation of a HIT.
Using XML to specify the task is a compromise of function-
ality and ease of use. It might be possible to define many
services simply by providing a text description of what the
worker is supposed to do with the given image. However
we want to provide for both simple and more complex ser-
vices. We provide an example XML task description, and
even novice users find it simple enough to locate the text
description in this block and edit it for their needs. More ad-
vanced users can specify arbitrarily complicated structured
input to match their needs. The AMT documentation pro-
vides a complete description of the schema, which allows
the inclusion of CDATA tags into which HTML may be em-
bedded to control the presentation details of the HIT.
Managing Robustness: Responses provided by turkers
have a very high error rate, with 30% error having been sug-
gested as a good rule of thumb (Bernstein et al. 2010). Some
sort of error management scheme is needed. Research has
shown that averaging answers from many workers often im-
proves the quality of the results (Snow et al. 2008). When the
nature of each query is known, it is possible to design cus-
tom verification and aggregation methods, such as averaging
numerical answers, or testing values against known check-

Figure 4: Service request stages. The request is submitted
for work and vote to the crowdsourcing platform. Progress-
ing a service request through the pipeline is managed by the
workflow engine depicted in figure 1.

sum bits (Davis et al. 2010). We would like our framework
to abstract this verification step, however we know nothing
in advance about the nature of the data being collected.

In order to generalize the verification step, we implement
a strategy of asking for several answers, and then submit-
ting the results to another round of turkers to rate those an-
swers. This is far from optimum, since data specific aggrega-
tion might do much better with fewer requests. However our
goal is to be general and simple, as opposed to maximally
cost effective. When a service is defined, the developer can
specify the number of turkers who should perform the same
task. The developer also specifies the number of ratings each
response should receive. Each rating task presents the origi-
nal request image and the response, and asks the turker to
rate the response on a scale of 1 (wrong) to 5 (perfect).
Finally, the ratings for a given response are averaged and
the response with the highest average rating is returned to
the user. For example, if the developer asks for 5 responses
and 3 ratings per response, the system will submit a total of
20 tasks to AMT for each image submitted by a user. We
have found that this methodology allows developers to in-
crease robustness easily and arbitrarily across a wide range
of tasks, without having to produce an aggregation function
themselves.
Implementation: The web application is written in Java and
relies on a MySQL database for its storage needs. A request
is initially emailed to a system designated email account
which is monitored by a worker thread in the web applica-
tion. These email requests are downloaded by the web appli-
cation and saved into the database with a “pending” status.
A given request then passes through a series of processing
steps, as shown in figure 4. These steps use the AMT API
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Figure 5: Mobile application. The left side, the submit tab,
allows the user to take or choose an existing picture for sub-
mission. The right side, the review tab, allows the user to see
the history of request-response pairs.

to handle submissions, polling for responses, and resubmit-
ting answers for quality voting. When a final result becomes
available, it is stored in the local database and returned to
the user via email, as well as available from CrowdSight via
a REST API.

3.2 Mobile Application

CrowdSight is intended to leverage the ubiquity of mobile
devices with cameras. We provide multiple methods of in-
teracting with services which range from email to custom
mobile apps. The typical user of a CrowdSight service never
needs to use the Crowdsight website, all interaction can be
done through their mobile device.

Via email: CrowdSight is designed for quickly prototyp-
ing new services. To insure that it is easily available from
any mobile device we provide an email interface for sub-
mitting requests and receiving results. An email request is
composed of a service ID specified in the subject line and an
attached photo. Results are returned via email. This interface
was chosen as the lowest common denominator that would
insure new services can be easily tested and prototyped in
the field.

Sample Application: We provide a sample mobile applica-
tion on the iOS platform. This phone application is simply a
thin veneer on top of the functionality provided by the web
application, which it accesses through a simple REST API.
A screenshot of the sample phone app is provided in figure
5. This particular app simply allows a user to take a picture
and submit it, as well as to review the results for all past
requests.

Custom Application: Many developers will eventually
want to wrap their service in a custom mobile application.
This might be as simple as rebranding the sample applica-
tion, recompiling it, and selling it in the mobile application
marketplace. More advanced applications will want to do
something with results. Because the interfaces to Crowd-
Sight are extremely simple, and specifying new services is

much easier than writing computer vision code to accom-
plish the same tasks, it is straightforward and easy to add
CrowdSight functionality to more complex mobile applica-
tions.

4 Applications

In order to validate the suitability of CrowdSight as a plat-
form for quickly prototyping new applications we let several
graduate students create services they themselves would be
interested in using. Following is a sample of those applica-
tions. They were able to go from concept to having a service
up and running in at most a couple of hours.
Transcription: Identifying and transcribing text in pho-
tographs is an active area of computer vision research (Chen
and Yuille 2004; Wu, Chen, and Yang 2005; Chen et al.
2010). Application domains include robotics, road sign de-
tection, aids to the blind, and building book inventories.
Unfortunately customized algorithms are typically needed
for each new domain. We developed a transcription service
which is independent of the scene clutter, font, handwriting,
and domain by simply asking turkers to type in the text that
they see. The output is a text file containing the text tran-
scribed from the image. This application is so simple that we
use it as the example template for service developers (devel-
opment time: 10 minutes).
Counting people: Counting people in images is an impor-
tant component of many real world systems. For example,
Hyman built a system to count people in order to evaluate the
efficacy of dynamic signs on increasing stair utilization (Hy-
man 2003). The end goal of the research reported in his the-
sis was the study on efficacy, but 50% of the project descrip-
tion was devoted to building the system itself. In order to
get an estimate of time to build such a system, we asked
the authors of a real time people counting algorithm how
long it took to build their system (Yang, Gonzlez-baos, and
Guibas 2003). They reported several man-months to develop
and deploy the system. In contrast implementing a people
counting algorithm took 30 minutes using the CrowdSight
framework.

We tested our people counting application by monitor-
ing a small conference room for a few hours, during which
a meeting took place. A US$70 Panasonic PetCam was
pointed at the room and configured to send an image via
email to the CrowdSight service once per minute. We paid
turkers US$0.01/image, and did not enable redundancy and
voting. Figure 6 shows a challenging sample image sent to
CrowdSight. In this case the service correctly identified that
there are 5 people present. Existing computer vision meth-
ods would have trouble with this image, since one person is
nearly completely obscured from view.

Figure 7 shows a plot of room occupancy over time.
The gathered data accurately reflects reality: the room starts
empty at 8:30AM, one meeting participant comes 40 min-
utes early, the remaining participants arrive a little late for
the 10:00AM scheduled start, the meeting ends at 11:45AM,
and by Noon the room is again empty. The single person
at 8:50AM and 9:00AM is someone who entered the room
briefly and then immediately walked out. During the meet-
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Figure 6: An example of a challenging image for automated
people counting systems, which was correctly identified by
turkers.

Figure 7: Plot showing room occupancy over a period of sev-
eral hours as recorded by turkers. These numbers are fairly
accurate (the variability is explained in part by people walk-
ing in and out during a meeting).

ing time, between 3 and 5 participants were visible to the
camera. The service does make a few mistakes, missing
some heavily occluded people during the meeting, however
the overall data is surprisingly good.
Business card scanning: Many people would find useful
taking a picture of a business card and giving it to an ap-
plication which could magically transform it into an entry
in their contacts database, so we created one such service in
CrowdSight in about 15 minutes. This is a different prob-
lem than the freeform transcription described above since it
requires the data be parsed into known fields (Saiga et al.
1993).

We created a structured form for turkers to enter data with
12 fields (company, first name, last name, street, city, state,
zip code, phone number, mobile phone, fax number, email
address, website address). This seems like the kind of appli-
cation for which we should have good automated methods,
however our tests of existing commercial applications show
that this is not the case. Even though OCR is considered a
solved problem in many respects, figuring out what informa-
tion goes where is not necessarily trivial, even in a domain
as limited as that of a business card. Figure 8 shows a cou-
ple of the business cards tested, drawn from a sample of 30
business cards, with field completion rates (on average how
many fields were filled in correctly by the system per busi-

Figure 8: Sample business cards tested by the CrowdSight
service and the 2 automated apps. Neither of the automated
apps recognized any of the fields correctly in the top card,
and only 40% of the fields in the bottom card. The Crowd-
Sight service was nearly 100% accurate on both, except for
a misspelling in an email address.

ness card) of 80% for CrowdSight, 40% for BizSnap, and
30% for ABBYY’s card reader (ABBYY).

For this service, we paid turkers US$0.05/card, whereas
the rates of the commercial apps varied. ABBYY offered
their card reader app for US$4.99 for processing an unlim-
ited number of cards and BizSnap had a tiered pricing struc-
ture: US$1.00 for 10 cards, US$2.00 for 25, or US$6.00 for
unlimited processing.

Product finder: This service enables a user to take a picture
of something and to get back a link pointing to where the
item in the image can be purchased. Object recognition is
a well studied problem in computer vision, and shopping is
just one possible application (Lowe 1999; Yeh et al. 2005;
Tsai et al. 2008).

We compared the performance of this service against that
of two existing applications: one which uses automated im-
age processing algorithms, SnapTell, and one which requires
the bar code of the item to be scanned, RedLaser. If an item
had a bar code, RedLaser would usually find the item, how-
ever there were bar codes that we scanned that were not in
RedLaser’s database and also there are many items we tested
which did not have a bar code. The SnapTell application, on
the other hand, did not require bar codes but had a limited
product category database (books, DVDs, CDs, and video
games).

We measured the accuracy of the system tested by deter-
mining whether or not a valid link for purchasing the item
was provided, which all systems are supposed to be able to
do. In the end, all three systems had comparable accuracy,
identifying most items (8 out of 10 on average) within their
advertised domain; however, the CrowdSight service had a
much more encompassing domain, not being restricted to
items having a barcode nor to a limited product category.
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This CrowdSight service was built in about 20 minutes.

5 Future Work
A possible future extension to the framework would be to
enable developers to compose existing services into com-
posite workflows. For example, defining a new service X
to be the sequential composition of existing services A and
B (any of which could itself be a composite service). We
also envision improvements in the UI for creating services,
since some developers would prefer a WYSIWYG interface.
Our existing method of accuracy verification via rankings
is extremely simple, and investigating more sophisticated
methods that better control costs would be useful. Finally,
it would also be desirable to be able to process media other
than images, including audio and/or video input.

6 Conclusions
We developed a framework which simplifies prototyping
applications that rely on “computer vision.” The process-
ing leverages human computation. Developers who use our
framework are spared both from developing a complex com-
puter vision algorithm, and from many of the details nor-
mally needed to deploy a solution using Amazon Mechani-
cal Turk. End users of applications are never exposed to the
implementation method, they just experience that the image
gets processed and the results are accurate. We believe that
the ability to quickly and cheaply prototype and deploy new
applications will increase the rate at which useful applica-
tions are found. We expect that some of these solutions will
continue to use a human computation back-end, while oth-
ers will eventually migrate to a fully automated processing
algorithm.
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