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Abstract

Malfunctioning HVAC equipment in commercial build-
ings wastes between 15% and 30% of energy. Many
diagnosis approaches tackle this problem, but they ei-
ther suffer from a lack of detailed fault information or
a lack of adaptability to different buildings and equip-
ment. Clearly, especially in the light of an ever increas-
ing amount of sensor data that is available in heav-
ily metered smart buildings, easily adaptable self learn-
ing in-depth diagnosis approaches are needed. This pa-
per addresses the challenges of developing such ap-
proaches and describes the contribution artificial in-
telligence techniques like transfer learning, ontologies,
knowledge representation or diagnosis can make in
overcoming these challenges.

Motivation
There is an increasing need for automated fault identification
tools in buildings. Almost 32% of the total energy consump-
tion in industrialized countries is used for electricity, heat-
ing, ventilation, and airconditioning (HVAC) in buildings.
This value could be significantly reduced if malfunction-
ing equippment could be identified quickly and numerous
diagnosis approaches tackle this problem (Katipamula and
Brambley 2005; Youk et al. 2008). However, these meth-
ods are generally highly specialized for specifically target-
ted fault behaviours (Katipamula and Brambley 2005), and
thus limited to the diagnosis of well-understood faults. Due
to the specialization of these technologies they are difficult
to adapt to different equippment types and thus very costly
to deploy.

On the other hand, more easily adaptable statistical tech-
niques are used to detect faults in buildings (Jacoba et al.
2010). However, they only provide very limited fault infor-
mation. Our vision is to develop a practical adaptable fault
identification approach that addresses all of the above prob-
lems.

In particular such an approach should have the basic abil-
ity to discover characteristics of new faults for which there
does not yet exist a diagnosis method. This is especially rel-
evant in the context of smart buildings, i.e., buildings that
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have an automatic control system and that are heavily me-
tered. Their rich sensor information could potentially be ex-
ploited for a more powerful diagnosis. The problems that
need to be tackled are thus (i) how to identify and collect all
relevant diagnosis information that might allow the charac-
terization of new fault behavior, (ii) how to reuse this diag-
nostic information across different equipment and buildings
and allow for an easy deployment of the approach, and, fi-
nally, (iii) how to efficiently exploit the gathered diagnostic
information for a timely and optimal identification of faults?
This paper discusses the challenges of developing solutions
to each of these problems and lists some Artificial Intelli-
gence methods that are promising starting points for tackling
these challenges.

Retrieval of Relevant Diagnostic Information
Smart buildings solutions can typically benefit from vast
amounts of information that is available via different
sources. A big challenge is to identify the relevant data and
to develop the technologies that allow their timely retrieval.

For the task of fault identification in buildings there are
at least three main sources of information and related tech-
nologies that need to be considered:

1. Metered data: data that comes from sensors in the build-
ing. It is often in the form of time series and can be ex-
ploited using statistical analysis tools like machine learn-
ing or time series analysis and forecasting techniques.

2. User feedback: data that comes from the feedback of oc-
cupants. This data is often written in free text and requires
the use of natural language processing techniques along
with well defined ontologies and taxonomies to be ex-
ploitable.

3. Domain expert knowledge: expert knowledge of the
building’s behavior and functioning, generally repre-
sented using rule engines. The acquisition of these rules
is often done manually leading to a huge work overhead.
Rule engines are usually based on pure logic, fuzzy logic
or Bayesian belief networks to make use of the knowledge
induced by the rules.

Each of these sources of information requires the applica-
tion of completely different technologies in order to retrieve
and use them. Thus the collection of diagnostic information
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could be significantly simplified if it were possible to avoid
considering all of the above information sources. However,
as the following use case demonstrates, this might limit the
diagnostic capability.

Consider the case of a building where it is detected that
a boiler is consuming an anomalous amount of gas. This
boiler is supposed to provide heat to an office room and is
controlled by a temperature sensor that makes sure that the
target temperature is reached. This anomalous consumption
might have (among others) the following explanations:

1. One of the building’s air handling units (AHUs) is not
working properly leading to an inefficient transport of
heat from the boiler to the targeted room.

2. One of the room’s windows has been left open leading to
an important loss of heat in the room.

3. The temperature sensor is not working properly leading
to a wrong report about the room’s actual temperature.

Thus, none of the different sources of information listed
above can provide a full picture of the observed system:

1. Metered data is insufficient as it cannot capture all that
happens in the building. For example, instrumenting each
window of the building to know whether it is closed or
to what degree it is open is too costly. Furthermore, some
variables like the user’s thermal sensation are just impos-
sible to measure directly. As it is not feasible to meter
everything in the building, metered data provides a partial
assertion of the building’s situation only.

2. User feedback is insufficient. If asked, users can give the
information that a window is open; but they will not detect
that the boiler is using much more gas to compensate for
it. Users can also complain about the temperature in the
room, but can not link it to a defective AHU.

3. Domain expert knowledge enables us to make the link be-
tween a boiler consuming too much gas and a defective
AHU or a window open, but it is very difficult to ap-
ply that knowledge without having metered data and user
feedback reporting about the state of the building.

It is therefore necessary to cross-correlate those different in-
formation sources in order to develop smart systems for fault
identification.

However, each of the information technologies (statisti-
cal analysis, rule engines, taxonomy based natural process-
ing engines) needed to process data from different sources
is very costly to deploy and maintain. Another difficulty
arises from the infeasibility to predefine all fault behavior
in advance and from the diversity of the fault concept. A
fault might be a drift in energy consumption, a sudden drop
in water consumption, or a combination of those. Each of
these faults concerns different systems and should be trig-
gered using different data analysis methods on different sub-
sets of variables. Currently, the predefinition of methods
and variables is an entirely manual process (Seem 2007;
Li, Bowers, and Schnier 2010; Yang et al. 2011).

Techniques are needed that allow a user to incrementally
explain to the system how it could identify faults by defining
which subset of variables and learning methods the machine
should use to detect it.

Summary of Challenges
To summarize, the identification and retrieval of diagnostic
information is a challenging problem due to
• the need to analyze data from three different sources,
• the need of integrating data from three different sources,
• the infeasibility of predefining all information required to

make complete fault identification and
• the diversity of the fault concept when learning new diag-

nostic information.
An approach capable of overcoming all these challenges has
not yet been developed.

Promising Artificial Intelligence Methods
Techniques from the field of machine learning are promis-
ing to meet these challenges. For instance, active learning
techniques capable of enabling a domain expert to guide the
system in its learning could be considered. In particular the
work of (Gervasio, Yeh, and Myers 2011) that presents a
metalearning approach could serve as a promising starting
point for learning how to define the learning problem based
on relevant variables and analysis methods. While the exper-
iments of the above approach were conducted on a synthetic
domain and relied on exhaustively generated data, we have
to tackle the metalearning challenge by resorting to available
data only.

Automatic Reusability of Diagnostic
Information

The core problem with reusing the diagnostic information is
that it is not straightforward to transfer the different sources
of information without considerable effort. In most smart
building scenarios metered information is the most readily
available information source. It is retrievable via a computer-
based control system, the Building Management Systems
(BMS). An individual BMS typically monitors and controls
a large range of different types of equipment. Thus, each
BMS has a large set of variables that represent measure-
ments taken by physical sensors. The use of mark up lan-
guages to aid interoperability has already begun, e.g., use of
SensorML (Liscano and Kazemi 2010) for sensor systems
or PMML for statistical models (Guazzelli, Lin, and Jena
2010). These detailed descriptions can allow an operator to
understand similarities between the components of different
BMS. However, components of the diagnostic information
from one building may still be labeled differently in another
building. For example, in one system the term ‘Back-end
temperature’ may be used while in another ‘boiler return
temperature’ may be used to describe the same type of mea-
surement.

Much care must also be taken to transfer diagnostic in-
formation retrieved from domain experts. This is often in
the form of rules and subtle changes to these rules can have
large effects. An example of a simple rule is: (Toa - Tma) >
εt. This same rule appears in (Schein et al. 2006) and (Han
and Chang 2009). It essentially looks at the difference be-
tween outside air and mixed air temperature under a partic-
ular operation condition. However, a simple change in the
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thresholds for this rule (εt) could have a large impact on the
efficiency of the building. More generally, transferring sta-
tistical information is highly challenging. This is due to the
source of information that statistical models are based on:
metered data are often very specific to their metered system
and it is challenging to segment what statistical knowledge
might be common across two buildings and what knowledge
from the metered data is specific to the observed system and
should not be transfered. Even if the information that can
be transfered has been identified, defining how to perform
the actual transfer is far from trivial: complex multivariate
normalization factors might be needed to apply statistical
knowledge from a building with 200 people and 1000 m2 to
a similar building with only 10 people and 200 m2.

Summary of Challenges
The following problems arise in relation of the transfer of
the diagnostic information:

• An ontology based on the reports of users will require
techniques to extract the terms and relationships while
one based on information supplied by expert users must
be built using interactive tools.

• The diagnostic information will not be exhaustive and re-
quires the potential to discover new rules and integrate
knowledge from other information sources.

• Even the diagnostic information for the same building can
become redundant over time as equipment in the building
is changed, zones of use change, etc.

• Different buildings will have different physics, i.e. differ-
ent termo-dynamic properties, different equipment; and
so the diagnostic information will require much adjust-
ment to transfer properly. This adjustment will be expen-
sive in terms of time and man-hours (thus requiring an
automatic or semi-automatic approach).

Promising Artificial Intelligence Methods
Ideally a method to automatically transfer the diagnostic in-
formation is needed and this may require descriptions which
are structured and rich enough to allow for a more seamless
transfer of the diagnostic information. The major difficulty
here is that there are no freely available domain ontologies
and there is no one single solution available to create the ap-
plication ontology. However, there are methodologies that
can aid ontology creation: (1) lexico-syntactic patterns to
detect hyponymy relations (Hearst 1992); (2) exploiting the
internal structure of phrases to derive taxonomic relations;
(3) exploiting hierarchical clustering algorithms to automat-
ically derive term hierarchies from text (Grefenstette 1994;
Cimiano, Hotho, and Staab 2005). Deploying the axioms
and rules in a real-word setting requires automated vari-
able mapping from the ontology onto the BMS. Ontology
mapping is the process of finding semantic correspondences
between similar elements of different ontologies. The cor-
respondence can be based on lexical similarity, e.g., (Seco,
Veale, and Hayes 2004), among other methods.

A domain ontology for smart buildings must also ac-
count for the types of knowledge from all the information

Table 1: Ontological layers for a smart building scenario.
∀x ( chilling(x) V heating(x) = fault(x)) AXIOMS and RULES

cool( dom:CHILLER-COIL, range: WATER ) RELATIONS
is-a (FUEL-LINE, PIPE) TAXONOMY

FAULT := < I,E,L > CONCEPTS
(regulator, control, controller) SYNONYMS

HVAC, boiler, chiller TERMS

sources. Thus in the building management domain there is
a great deal of formal knowledge already represented, e.g.,
in fault detection and diagnostic rules. The ontology builder
must reconcile the existing formal knowledge with knowl-
edge from the users (expert or otherwise). Table 1 shows
an example of ontological layers for the building manage-
ment area based on a non-building management (Buitelaar
and Magnini 2005). Rather than building an ontology just
from the base (term level) an integration with a top-down
approach is needed that can exploit existing expert knowl-
edge like rules and axioms.

For tackling the problem of transferring statistical knowl-
edge methods from the field of transfer learning, in partic-
ular the work of (Hu, Zheng, and Yang 2010), provide a
promising starting point.

Optimal Diagnosis based on iteratively
acquired diagnosis information

Given the knowledge that becomes iteratively available there
are many different ways of representing it. A major aim is to
ensure that the resulting representation allows for easy up-
dates and efficient diagnostic reasoning. Numerous diagno-
sis approaches for fault identification in buildings have been
developed but they are highly specialized for particular fault
behaviors (Katipamula and Brambley 2005). Thus, a good
understanding of the anticipated fault is needed for selecting
an efficient diagnosis approach. In our context this assump-
tion does not necessarily hold. When discovering new fault
behaviors one cannot resort to existing specialized diagno-
sis methods. Therefore, diagnosis algorithms are needed that
most efficiently exploit the available knowledge about fault
behaviors.

The latter is defined over events from different sources
consisting for instance of:

• user feedback, e.g., ‘lamp broken’,

• results from statistical analysis, e.g., ‘fault pattern in time
series data of illumination sensor’, or

• domain expert input, e.g., ‘alert if light switch is on and
illumination level below 200 lux’.

The same fault could be identifiable based on any of the
above information sources or based on a combination of
the latter. Furthermore, some information might require a
costly action to obtain it, e.g., request user feedback, and
these actions might fail. Thus, in contrast to most diagnosis
algorithms that aim to identify faults based on a set or se-
quence of readily available observations, we face the addi-
tional challenge here of obtaining the necessary observations
at minimal cost.
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Summary of Challenges
For tackling the above mentioned problems a unified diag-
nosis framework is needed that can

• handle missing sensor information and incomplete system
models,

• associate action costs to (observable) events, and

• compactly represent diagnostic information.

Such a framework has not yet been developed.

Promising Artificial Intelligence Methods
Methods from knowledge representation, reasoning and di-
agnosis have the potential to address these challenges. In
fact, parts of the above problems have been tackled before,
like the one of missing sensor information and incomplete
system models (Bonarini and Sassaroli 1997; Chatain and
Jard 2004; Zhao and Ouyang 2008), the one of considering
action costs (Torta, Dupre, and Anselma 2008) or the one of
compactly representing probabilistic models (Darwiche and
Marquis 2002; Dechter and Mateescu 2007). However, these
approaches were partially applied to toy systems only and
significant advances are necessary in order to integrate them
and use them for diagnosing complex building systems.

Conclusions
Properly functioning HVAC equipment is the basis for many
challenges in the smart living domain, like reduced energy
use and increased occupant comfort. Thus, the problem of
developing an easily adaptable self learning fault identifi-
cation approach for smart buildings is one of great practi-
cal significance. This paper has described some of the main
challenges that need to be tackled in order to approach this
development task and has identified a number of artificial
intelligence techniques that have the potential of addressing
these challenges.
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