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Abstract

End-user programming raises the possibility that the peo-
ple who know best what a software system should do will
be able to customize, remedy original programming defects
and adapt systems as requirements change. As computing
increasingly enters the home and workplace, the need for
such tools is high, but state of practice approaches offer very
limited capability. We describe the Interactive Bootstrapped
Learning (iBL) system which allows users to modify code by
interactive teaching similar to human instruction. It builds on
an earlier system focused on exploring how machine learning
can be used to compensate for limited instructional content.
iBL provides an end-to-end solution in which user-iBL dia-
log gradually refines a hypothesis about what transformation
to a target code base will best achieve user intent. The ap-
proach integrates elements of many AI technologies includ-
ing machine learning, dialog management, AI planning and
automated model construction.

Introduction

Complex operating environments such as homes or work-
places present especially difficult software engineering chal-
lenges. Requirements are often imperfectly understood,
so initial design is usually faulty. Operating needs can
change, so initially correct design decisions might become
invalid. Development processes are typically rigorous and
time-consuming, so modifying software can be very costly.

Allowing end-users to extend and modify software that
they use on a daily basis offers a potential solution. How-
ever, state of practice end-user programming (EUP) methods
typically provide very limited control. For example, macro
recorders in spreadsheet software and rule frameworks used
in many email clients allow users to automate some other-
wise manual behaviors, but do not allow users to modify
existing software behavior. Other approaches make it rel-
atively easy for users to write structured code (e.g. visual
programming (Shu, 1999) and some natural programming
(Myers, Pane, and Ko, 2004) and automated programming
(Pecheur, Andrews, and Nitto, 2010) methods). But these
require formal expression of user intent (desired system be-
havior) that does not scale well to complex applications.
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The idea of Programming By Instruction (PBI) is to give
users ways to express intended software behavior similar to
those they would use to teach a person. MABLE (Mailler et
al., 2009) is a first-generation PBI architecture that supports
three forms of instruction. Teaching by Telling involves di-
rect expression of instructional content, but may omit a great
deal of information that MABLE must retrieve or infer from
background knowledge. Teaching by Example (demonstra-
tion or indicated instances) is useful when telling would be
onerous or involves hard-to-express concepts. Teaching by
Feedback is useful when the system can generate approxi-
mately correct behavior.

As described by Mailler et al. (2009), MABLE was de-
signed to explore the use of current-generation machine
learning methods to address a key problem in PBI: speci-
fying concepts, corresponding to code-level procedures and
conditions, from limited instructional content - filling in
omissions and generalizing from examples and feedback.
MABLE was evaluated by outside researchers (as required
by DARPA who funded the work) and found to perform well
in learning a broad range of concepts. However, the ma-
chine learning focused evaluation process required design-
ing MABLE not to interact with a human user, but to receive
instructional content (lecture style) from an artificial teacher.

Interactivity is particularly important for PBI systems be-
cause, without it, the end-user needs to guess what informa-
tion to provide. That means either providing all information
that could be useful without regard to what the system can
infer or else knowing the inner workings of the system well
enough to select just the right content. Either of these un-
dermines the effectiveness of PBI. In contrast, PBI incorpo-
rating question-asking capabilities can focus user effort on
delivering only needed content.

The Interactive Bootstrapped Learning (iBL) system de-
scribed in this paper is an interactive PBI system that builds
on the machine learning based approach developed for
MABLE. An iBL user modifies target performance software
(PS) through instructional dialog used to generate a Code
Transformation (CT), a set of point changes to the PS that
together achieve user intent. CTs range from simple changes
(e.g. substituting a new value for one argument of a speci-
fied procedure) to changes to diverse code structures spread
across multiple procedures. Dialog between iBL and user is
an interactive search for the correct CT with each step of dia-
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log translating into one or more constraints in CT-space (the
space of possible code transformations). The core function
of iBL is to interact with the user to manage this search, a
process that is summarized in this paper following a descrip-
tion of the iBL system. We describe the iBL system with an
example taken from a military domain, but note that iBL is a
generic system whose underpinnings have been motivated
by and demonstrated in many diverse domains, including
space shuttle diagnosis, vehicle routing, and Robocup soc-
cer. These domains exhibit many of the same challenges
faced by everyday end-users and stress the need for simple
and intuitive programming tools.

MABLE: Learning By Instruction

iBL builds on MABLE (Mailler et al., 2009), a domain-
independent PBI system that supports several natural in-
struction methods and outputs learned concepts correspond-
ing to code-level procedures, functions and conditions. It
has been tested in diverse domains including RoboCup Soc-
cer, Armored Task Force military doctrine and planning, In-
ternational Space Station fault diagnosis, Unmanned Aerial
Vehicle (UAV) command and control and a hidden domain
unknown to the researchers who developed MABLE. The
latter domain was recently used by outside evaluators to
ensure domain-independence and to allow comparison of
MABLE to human learning performance.

The evaluation tested how well MABLE could learn
lessons by each of the supported instruction methods. For
example, in the UAV domain, the PS might be instructed to
capture video imagery of a suspicious target near a power
plant using the Teaching by Telling method, then taught
what a suspicious target is by Example and what consti-
tutes nearness by Feedback. The project objectives required
achieving 75% of human performance on a set of 6 top-level
lessons, each of which depended on learning a tiered set of
building block lessons. That translated to a required score
of 68% (i.e., roughly equal to 100% correct on 4 of the 6
lessons). Reflecting a project assumption that PBI would
resemble human instruction (Cronbach and Snow, 1977) in
that the best instruction method would depend on what was
to be learned, MABLE’s score was based on whichever in-
struction method worked best.

MABLE scored 100% on each of the six final problems.
This strong result indicated a high level of maturity in dis-
covering how to use machine learning techniques to learn
certain classes of PBI lessons. It also highlighted limitations
on what sorts of problems could be effectively addressed
without relaxing the non-interactivity assumption. For ex-
ample, MABLE might have trouble learning by Example
due to too few negative examples, but would be unable to
ask the user to provide some.

iBL System Overview

MABLE was designed to support an investigation of how
machine learning algorithms can be adapted to distill con-
cepts from sparse but well-chosen and well-structured in-
structional inputs. But it is not a complete, usable PBI sys-
tem. In particular, it includes no capability for interacting

with a human user, no model of how to conduct such an
interaction to advance learning goals and a very simplified
model of the PS to be modified by instruction. iBL was de-
veloped to fill these gaps and provide a complete, interactive
PBI solution.

We assume that iBL users are trained in how to use the
system and that they are experts in the operational domain
of the PS they wish to modify. The iBL use process starts
with some goal for altering system behavior or enhancing
system performance. In a UAV Intelligence, Surveillance
and Reconnaissance (ISR) domain for example, such goals
are likely to originate with end users of the ISR informa-
tion products (e.g. analysts, decision-makers) whose needs
are not being met. The iBL user would then carry out the
following steps:

1. Load or create a simulation scenario that produces goal-
relevant conditions.

2. Run the simulation until these conditions occur, then
pause. This sets a context for teaching.

3. Initiate a new lesson and engage in dialog to specify the
lesson goal (user intent).

4. Resume the simulation, pausing to add additional instruc-
tion (for instance, to point out instructive examples) as
needed.

5. When iBL’s interpretation of the lesson goal is accurate,
mark the lesson complete. The PS is then modified.

6. Run simulation to see if the PS now behaves as desired.

7. Once validated within iBL workbench, export the code
change for appropriate vetting.

Figure 1 depicts iBL in use during a UAV-ISR lesson.
From the user perspective, iBL is very much like a video
editing tool that allows the user to play, pause, rewind, edit,
create, and verify different system behaviors (as supported
by the toolbar at the bottom of the figure). The user initiates
a lesson and conducts instructional dialog using the Lesson
UI widget (right of figure). The first step in such a dialog
is for the user to specify (from a menu) how they wish to
convey the lesson goal: by telling, example or feedback. For
example, if they select by Feedback, the initial stages of dia-
log will be to specify what should have happened in the just-
completed simulation run instead of what actually happened.
Subsequent dialog generally follows a question/answer for-
mat in which iBL prompts the user to completely specify
intent. In addition, iBL will generate questions aimed at
selecting between alternative ways of implementing intent
(i.e., as a code transformation) that have different effects.
Users answer questions in a variety of ways including se-
lecting from a menu of choices, typing a value into a text
field, gesturing on the simulation main view to select an ob-
ject or indicate an example and providing qualitative feed-
back through specialized UI widgets. Dialog continues until
iBL has all the information it needs.

Many different kinds of code-level changes can result
from an iBL lesson. These include, for example, adding
steps to procedures, modifying step parameters, changing
the conditions under which procedure steps are invoked and
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Figure 1: iBL Workbench.

adding event handlers. One lesson may incorporate a sec-
ond, subordinate lesson. For example, a lesson that adds a
procedure step to make a UAV descend prior to observing a
suspicious target might be followed by another lesson defin-
ing the suspicious target condition. Similarly, a later lesson
might be used to refine a lesson (e.g., narrowing the defini-
tion of suspicious target).

iBL Technical Approach

The instructional process takes place in two main phases:
intention elicitation and code transformation.

Intention Elicitation

The goal of intention elicitation is to acquire a description
from the user of how the system should behave and rep-
resent this as a formal, machine-readable software require-
ment grounded in a declarative domain model. Elicited re-
quirements are represented using an enhanced temporal plan
network notation based on Constraint-based Attribute Inter-
val Planning (CAIP) (Frank and Jónsson, 2003).

CAIP representations consist of State Variables (SVs) and
intervals on SV timelines called tokens. Each token is de-
fined by a start-time, end-time and value. For example, given
SV-1 representing the altitude of the UAV, there might be
a token (SV=SV-1, start = 1:07.30, end = 1:08.00, value =
2000) representing a specific 30 second interval where the
aircraft should be at 2000 ft. Often, token attributes will be

defined as functions of other token attributes (e.g., where the
start of token-2 is 10 seconds after the end time of token-1).
We depict CAIP software requirements as shown in Figure
2 with line segments showing functional dependencies be-
tween tokens.

Each token represents an external condition (e.g., that alti-
tude is at a certain value or within a certain range) or internal
condition (e.g., that the performance system is carrying out a
certain activity such as navigating to a target). A CAIP struc-
ture as a whole can be interpreted as a software requirement
of the general form: under applicability conditions (C1) the
software will act to produce conditions (C2) hold which will
lead to a cascade of conditions (C3) resulting in meeting out-
come requirements defined by conditions (C4).

To support this kind of interpretation, we extend the stan-
dard CAIP notation in three ways. First, tokens are labeled
to be of type enforce (shown in blue), meaning it must hold
for the requirement to be met as needed for C2–C4, or of
type detect (red) meaning that the condition must be observ-
able as needed for C1. Second, tokens are direct (bold bor-
der) if the condition can be directly controlled or observed.
Third, tokens are anchors if they define either the intended
scope (applicability) or end goal of the requirement.

When the user begins a lesson, a single token is created
to seed the requirement specification process. For example,
starting a lesson of type Feedback-About-Outcome creates
a token with enforce=true and anchor=true but all other at-
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Figure 2: CAIP Representation of Instructor Intention.

tributes are unknown. In other words, the initial state is a
partial requirement stating that some outcome ought to be
enforced, but nothing yet is specified about what, when or
how. Knowledge acquisition goals (KAGs) are generated to
fill in the missing information. iBL first tries to satisfy the
goal by looking in a domain model describing background
knowledge. KAGs that cannot be satisfied this way (most
of them) require information from the user. A dialog man-
agement component selects which unsatisfied KAG to ask
about next and selects a method for interacting with the user.
These methods (called Dialog Episode Operators since they
are meant to be composable into dialog plans) specify how
to pose the question and which UI widget must be invoked
to let users express an answer.

KAGs drive the requirement elicitation process. There are
4 sets of rules for generating elicitation KAGs. The first
set ensures token completeness (i.e., that the start time, end
time, state variable and value of each token is completely
specified). The second ensures intention completeness: that
every token is labeled for enforce vs detect, directness and
anchoring, that all indirect tokens are causally linked to di-
rect ones, and that users have a chance to exercise certain
forms of discretion (e.g. whether to specify additional re-
striction conditions on the applicability of the intention).
The third set is for generalization. Users may answer ques-
tions by referring to specific simulator states and examples,
often creating ambiguity about how to generalize the infor-
mation. These KAGs either query the user or invoke ma-
chine learning algorithms to resolve such ambiguities. The
fourth set is for model completeness. In particular, the do-
main model may not include condition types that the user
needs to reference (e.g., the definition of a suspicious target)
or causal operators needed to enforce an indirect token (e.g.,
that changing altitude changes viewing angle on a target).
Dialog continues until all KAGs are achieved, indicating that
the requirement is completely specified.

The following UAV-ISR scenario illustrates intention elic-
itation dialog leading to creation of the formal requirement

shown in Figure 2.
Example: Initially, the user hears complaints from intelli-
gence analysts receiving UAV surveillance data that video
imagery collected during circular observation passes is often
taken at too oblique an angle to be useful. The user recreates
this situation in simulation, pauses when a good context for
teaching has been reached (i.e., when the UAV is currently
observing a target at a bad angle) and begins a new lesson.

iBL: What do you want to give feedback about?
User: vertical-view-angle of camera-image-1 The user ges-
tures to object in system object list. iBL generates an en-
force/anchor token and a KAG for ways to affect vertical-
view-angle and finds altitude or target-distance in back-
ground knowledge.
iBL: Should a better vertical view angle be achieved by
changing altitude or target-distance?
User: altitude. The user specifies “how” to modify behavior.
iBL creates an enforce token for a new value of altitude, and
a KAG for the temporal interval over which the value holds.
iBL: When should altitude have been different to achieve
a more desirable vertical-view-angle? The user specifies
“when” to modify behavior as constraints on start and end
times of the new altitude token.
User: From the start to the end of make-observation-pass.
The user gestures to interval in narration view. iBL creates
a direct detect token for make-observation-pass to anchor
future constraints on it.

[. . . ]

iBL: In what conditions should altitude be adjusted to
achieve a better vertical view angle? Several options are
listed.
User: (a) When in observe-hot-suspicious-target procedure.
The user sets the condition for modification. iBL creates
a function describing the condition and annotates altitude
token.
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[. . . ]

iBL: I know of one way to control altitude which is set-vnav-
altitude-restriction(altitude, location). Is it OK to use this
or should we define an alternative method? iBL uses the
domain model to determine that the VNAV-alt setting affects
altitude and uses the code model to determine that VNAV-alt
values are directly enforceable. iBL allows ad-hoc creation
of new behaviors.
User: OK to use this. iBL creates a direct enforce token
for set-vnav-altitude-restriction(altitude, location) and con-
strains it to begin before the altitude token.

[. . . ]

iBL: What altitude should be achieved before starting make-
observation pass when performing the activity observe-hot-
suspicious-target? You can tell altitude directly or give feed-
back and examples.
User: Tell.
iBL: Should the same altitude be selected in all conditions
or should it vary depending on the situation?
User: same. 2000 ft.

[. . . ]

Code Transformation

The second phase of instruction is to specify a code trans-
formation (CT) to the performance system code base that
is intended to achieve the user’s intent. This is treated an
AI planning problem. Inputs include a planning goal, the
software requirement specified during the intention elici-
tation phase, and an initial world state in the form of a
model of the performance software to be modified. The
code model is generated by static analysis and includes sub-
models for data flow, control flow and intended behavior
(assertions). iBL includes a set of Code Transformation
Templates (CTTs) that serve as planning operators. Each
CTT includes preconditions (properties of the unmodified
code base that determine if the CTT applies), a goal condi-
tion (that must match the elicited software requirement) and
post-conditions (a set of point modifications to the code base
which together achieve the goal).

Figure 3 shows an example of code in the RAPs language
(Firby, 1987) transformed to meet the requirement repre-
sented in Figure 2. The original code specified a proce-
dure for observing a hot suspicious target that consisted of
four steps: laterally navigating to a position near the tar-
get, powering up the camera, making a circular observation
pass around the target and then powering down the cam-
era. Applying a code transform to achieve a better view
angle resulted in changes (highlighted) for inserting a new
altitude change step prior to be observation pass and then
changing the altitude back after the observation pass is com-
plete. CTTs are specialized for a particular programming
language, but represent idiomatic code changes that apply in
many languages. For instance, the idea of modifying code to
make a temporary change to some condition, perform an ac-
tion and then restore the condition to its prior value is com-
mon in all procedural languages.

Though a general approach would create a code transform
that combines multiple CTTs, just as AI plans typically se-
quence multiple operators, our current approach is limited
to code transform derived from a single CTT. In this simpli-
fied approach, the problem of CT generation has two parts:
selecting a CTT and specifying its parameters.

CTT selection requires matching the CTT goal to the user-
specified intent and checking whether the CTT’s precondi-
tions hold. For instance, the CTT described above for tem-
porarily modifying a variable requires matching that vari-
able to a directly enforced condition in the user intent spec-
ification. Preconditions define what must be true of the un-
modified code base for a particular change to have the de-
sired effect. For example, a CTT that makes changes by in-
serting steps before and after an existing step will only work
if that step is within a sequential portion of a procedure. If it
is in a segment of parallel code, a different CTT is needed.

CTT specification is mainly a side-effect of CTT-
selection. For instance, the CTT in our example requires
specifying which RAPs procedure to modify and which step
within the procedure should execute when the condition (al-
titude in this example) is temporarily changed. These val-
ues are bound during model queries used to test precondi-
tions. One exception is when there is genuine ambiguity
about how to integrate new behavior with correct existing
behavior. When unknowns of this sort are identified by iBL,
the system generates a KAG to acquire the needed informa-
tion from the user. For example, iBL may note that in the
simulated scenario, altitude was set earlier to a value de-
fined by the function cruise altitude and need to know if ex-
act prior value should be restored or whether altitude should
be restored to the current value of this function.

Conclusion
iBL differs from prior PBI approaches in its overall user
interaction design, support for multiple interleaved instruc-
tional methods, use of ML techniques to compensate for
limited instructional content, use of a constraint-based hy-
pothesis space to allow composition (“bootstrapping”) of
incrementally-specified lessons and ability to modify extant
code rather than add additional code elements. However,
aspects of it are closely related to many previous PBI sys-
tems, especially those for task learning (Myers et al., 2007;
Gervasio, Yeh, and Myers, 2011) which also use machine
learning to compensate for limited content. Another closely
related approach is the work of Fritz and Gil (2011), also an
outgrowth of MABLE research, which combines learning
by demonstration and by telling. An important difference
from iBL is that hypotheses are in the form of executable
code rather than CTs and user intent representations. This
reduces the amount of interaction needed to complete a les-
son but does not easily support more complex changes that
need to be defined incrementally.

The central element of the iBL approach is use of a
constraint-based representation for the hypothesis space that
allows automatic identification of further knowledge re-
quirements. These can be used to drive dialog and thereby
gain the advantages of interactive PBI. A variety of AI tech-
nologies are integrated to support this process including
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(define-rap (observe-hot-suspicious-target ?target) 
  (succeed (imaged ?target)) 
  (constraints (and (working camera-1)  
        (in-range ?target))) 

  (method normal 
    (task-net 
      (sequence 
        (parallel 
       (t1 (LNAV-position ?target)  
         (circle-proximity ?target) for t3) 
       (t2 (power-up cam-1) (on cam-1) for t3)) 
    (tx (VNAV-alt 2000) (altitude 2000) for t3) 
    (t3 (make-observation-pass circular ?target) 
      (imaged ?target) for ty) 
    (ty (VNAV-alt (cruise-alt) for t4) 
    (t4 (power-down cam-1)))))) 
� � ��

�

(t3 ( k b ti i l ?t t)
(tx (VNAV-alt 2000) (altitude 2000) for t3)

(t4 ( d 1))))))
(ty (VNAV-alt (cruise-alt) for t4)

rcularcula
ty)

CT�
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Figure 3: Code Transformation.

elements of dialog management, constraint-based reason-
ing, automatic model generation, AI planning, and machine
learning. Limitations of the system, or alternately opportu-
nities to improve it, are primarily limitations on how well
these elements have been employed. For example, the AI
planning notation used to represent user intent is not very
good for expressing concepts such as repetition and con-
ditional execution. This limits how well iBL can be used
to modify many code-level control structures. Other limits
stem from having a limited library of CTTs and DEOs to
conduct dialog and effect code transformations. These limi-
tations will be addressed by ongoing iBL development.
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