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Abstract

Recently, information gain has been proposed as a candidate
intrinsic motivation for lifelong learning agents that may not
always have a specific task. In the InfoMax control frame-
work, reinforcement learning is used to find a control policy
for a POMDP in which movement and sensing actions are se-
lected to reduce Shannon entropy as quickly as possible. In
this study, we implement InfoMax control on a robot which
can move between objects and perform sound-producing ma-
nipulations on them. We formulate a novel latent variable
mixture model for acoustic similarities and learn InfoMax po-
lices that allow the robot to rapidly reduce uncertainty about
the categories of the objects in a room. We find that InfoMax
with our improved acoustic model leads to policies which
lead to high classification accuracy. Interestingly, we also find
that with an insufficient model, the InfoMax policy eventually
learns to “bury its head in the sand” to avoid getting addi-
tional evidence that might increase uncertainty. We discuss
the implications of this finding for InfoMax as a principle of
intrinsic motivation in lifelong learning agents.

Introduction
Agents in dynamic environments, both biological and
robotic, must continually deal with uncertainty about the en-
vironment and the objects they are interacting with. While
most organisms (as well as statically placed sensor devices
like security cameras) have the ability to passively sense
their environment, one key feature of “intelligent” agents is
the capacity for movement and manipulation, allowing them
to actively sense the world and extract otherwise hidden in-
formation. Moving to an object and manipulating it is often
the only way to get useful audio, tactile, or other sensations
that provide information about shape, surface texture, de-
formability, and other material properties.

The problem of active selection of maximally informative
actions has been treated extensively in statistics, where it is
referred to as optimal experimental design, and in machine
learning, where it is referred to as active learning (see Set-
tles, 2009, for a review). These approaches typically do not
address the unique concerns of organisms and robots em-
bedded in physical space, in which the agent needs to tra-
verse physical space, limited-range sensors need to be posi-
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tioned and oriented properly, and certain manipulations must
be done in a specific order.

Recently, InfoMax control has been proposed as a frame-
work for addressing the needs of mobile agents with time-
costs for moving or using sensors and information gathering
actions. In the InfoMax approach, the information seeking
problem is framed as a partially observable Markov deci-
sion process (POMDP), where the unknown states are the
categories of the objects in the environment, and the actions
at each time step are either to move (and if so, in what direc-
tion) or to select a sensing action to perform on the object
at the current location. At each time step, the reward is the
negative Shannon entropy of the unknown object categories,
averaged over all objects in the room. The goal then is to find
a policy which maps the current belief state to actions that
will maximize the mutual information between the currently
believed object categories and the resulting observations.

This paper extends InfoMax control to a more complex
domain than has been studied in the past – namely, a mo-
bile robot which learns to recognize a set of objects through
the sounds produced when manipulating them (for instance,
gasp, shake, drop, etc.). To do so, we develop an acoustic
category model that provides the ability to take an arbitrary
number of actions on an object to infer a distribution over
acoustic category similarities. Our experiments with 10 ob-
jects (in worlds with 3 objects at different locations) show
that learned InfoMax control policies do a good job of gath-
ering information, resulting in high post-hoc classification
accuracy. We also find the surprising result that, under an
insufficiently complex object model, InfoMax policies will
eventually stop taking actions in order not to accidentally
gather information that might reduce confidence. In such
cases, this behavior in fact does increase the expected in-
trinsic reward, however it leads to decreased classification
accuracy. This leads us to speculate that while InfoMax is
appealing as a natural, infant-like “curiosity” mechanism, it
may be dangerous to rely on InfoMax if the robot’s models
may not be accurate and there is no way to automatically
improve these models, or if there is prior knowledge about a
robot’s future tasks that could be better used to optimize the
robot just for those tasks.

22

Lifelong Learning: Papers from the 2011 AAAI Workshop (WS-11-15)



Background and Related Work
Inspired by results from developmental psychology (Wat-
son and Fischer 1977), visual psychophysics (Najemnik
and Geisler 2005) and single-cell recodings in monkeys
(Bromberg-Martin and Hikosaka 2009), InfoMax has been
used to model real-world behaviors, such as detection of so-
cial contingencies (Movellan 2005), control of eye saccades
(Sprague and Ballard 2003; Butko and Movellan 2008;
2009; 2010), and head turns in socially interactive robots
(Fasel et al. 2009). InfoMax-like ideas have also been used
to learn the relationship between button presses and sounds
(Sukhoy et al. 2010). Our current work is an extension of
(Fasel et al. 2010), who used InfoMax in an “Information
Foraging” agent which learned to take movement actions
to reach objects scattered around the environment so that it
could apply sensing actions on them to reduce uncertainty.
That work was entirely in simulation, with very simple noise
models on sensors which were fully independent. In this
work we use a real robot which performs actions to extract
acoustic properties from objects. In addition, our robot also
must learn the dependencies between actions – for instance,
that a grasp must precede any object manipulation, a lift
must come before a drop, etc. – and when it is more infor-
mative in the long term to go to another object in the room
rather than continue sensing the current closest object.

Our method for predicting categories from acoustics
due to manipulations is based on (Sinapov, Wiemer, and
Stoytchev 2009; Sinapov and Stoytchev 2010). In their
work, a robot performed five different actions on an object
and recorded the sound during the action. These sounds were
converted to vectors of discrete symbols, which could then
be compared to example sequences in a database using a
general sequence alignment technique. The alignment dis-
tances from these comparisons were finally used for nearest-
neighbors classification. In this paper, we describe a method
for using these acoustic alignment distances to generate
variable-width kernel-density estimates of sound “proper-
ties” in a probabilistic generative model, in which taking a
particular action on an object is expected to produce a mix-
ture of sounds properties. This probabilistic approach allows
the robot to become increasingly certain of the object cate-
gories as it performs more actions, including repetitions of
the same action, even if certain objects under certain actions
tend to sound quite similar to several other objects under the
same actions.

Robot, Objects, and Environment
We perform our experiments with a mobile manipulation
robot, shown in Figure 1. The robot is constructed from
a Videre “Erratic” mobile base, and is equipped with a
wide variety of sensors for navigation, manipulation and
object recognition. Two Hokuyo laser range finders on tilt
servos are used for map building and dynamic obstacle
avoidance. The robot has a stereo camera and a Swiss-
Ranger SR4000 for 3D depth estimation of objects. Audio
is recorded through a USB condenser microphone mounted
on front lip of the robot base. Manipulations are performed
with a custom 7 degree-of-freedom arm, using Dynamixel

Figure 1: Top left: The robot used in our experiments. Top
right: The ten objects manipulated by the robot. Bottom:
schematic of the process of taking an action on an object
and then converting the acoustic signal into a sequence of
tokens.
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(Bioloid) servos, with 8 force sensitive resistors in the claw
used as a crude sense of touch. The robot can operate au-
tonomously on batteries, and while the robot has an 802.11n
wireless connection, all processing is performed onboard us-
ing a quad-core Intel Core i7 laptop. We use the Willow
Garage Robot Operating system (ROS, Quigley et al., 2009)
for coordination of different modules, such as localization,
path planning, and acoustic sensing. Planning for arm move-
ments and grasps based on the 3D localization of objects are
used using OpenRAVE (Diankov 2010) and the Point Cloud
Library (Rusu and Cousins 2011). Complete specifications
for the robot and arm, including drivers for all the hard-
ware and all source code for the experiments in this paper
are freely available.1

For all experiments in this paper, we use ten objects, pic-
tured in Figure 1. At the beginning of each episode, some
number (typically 3-5) of the objects are placed around the
robot in a ring. Time is divided into decision points2, and at
each decision point the robot can move to the closest object
on the left or right, or it can perform one of six manipulations
on each object: push, lift, shake-pitch, shake-roll, set-down,
drop, where shake-pitch shakes the object up-and-down, and
shake-roll shakes the object by rotating its wrist from side-
to-side. Sound is recorded during and immediately follow-
ing each of these actions, and the robot uses this information
to update its belief about the object category (as described
below). At each timestep, given its updated beliefs about the
object category, the robot selects and performs a new action,
until it has reached a maximum time-limit.

Acoustic similarity
When an object is acted upon, a sound may be produced
depending on the material properties of the object, the action
dynamics, and the properties of other interacting objects or
surfaces. For actions such as pushing or shaking, the sound
may continue for as long as the action occurs. For actions
such as dropping an object, the sound happens immediately
after the action is performed, and may be very short.

To compare different sounds of different lengths, we used
the method described in (Sinapov, Wiemer, and Stoytchev
2009). In this method, a database of 20-100 sounds (cap-
tured at 44.1kHz) for each object-action pair is first cre-
ated by the robot. Then for each action, all the sound se-
quences for that action are transformed into a timeseries of
17 frequency bins using a fast Fourier transform (FFT) with
overlapping 11.6ms windows. The FFTs are then used to
train a self organizing map (SOM). Using this representa-
tion, any acoustic signal can be transformed into a sequence
indicating which SOM nodes are most highly activated in
each time window. Two audio sequences can then be com-
pared by finding an optimal global string alignment using the
Needleman-Wunsch algorithm, which returns an alignment
disance. These pairwise distances are finally used to estimate
class probabilities p = (p1, ..., pN ) for N classes using a k-
nearest neighbors (kNN) estimation technique. Specifically,
let D = {(xi, yi)}Mi=1 be a database of M examples, where

1 http://code.google.com/p/ua-ros-pkg
2 Technically this makes this a partially observable semi-MDP.

xi is the ith audio sequence and yi is the category label. Then
for an example audio sequence x, the probability of class c
is estimated by

pc =
( ∑

y∈Bk(x,D)

δ(i, y) + ε
)
/ Z(x) (1)

where Bk(x,D) are the k nearest neighbors to x in the
database D using the Needleman-Wunsch alignment dis-
tance, δ is the Kronecker delta function (i.e., δ(u, v) = 1 if
u, v are equal and zero otherwise), ε is a small regularization
term (in our case 0.01), and Z(x) is the partition function to
ensure the probabilities sum to one.

Multi-action acoustic category model
The method above gives us a probability estimate for a sin-
gle sound produced by taking one action on an object. In
order to combine the result of multiple actions (including
repetitions of the same action) we developed two candidate
models. The first model maps sound similarities directly to
object category probabilities. The second uses an intermedi-
ate representation where object categories represent a distri-
bution of sound similarities given each action.

For both models, we note that if we made the assumption
that each observation is conditionally independent given the
action and object, then the class probabilities conditioned on
all observed sounds could be computed simply by taking the
product of the above probabilities and normalizing. This as-
sumption is too simplistic however. For instance, if an action
is repeated on an object, then taking products of the kNN
probability estimates would usually result in an overly high
confidence for one category even if that category only gets
slightly higher probability on each individual trial. There-
fore, both of our two candidate models try to deal with the
problem of lack of independence.

Model 1: Our first model attempts to handle this issue by
modifying the probability estimate in eq. (1) so that, given
T acoustic measurements of an object,

pc =
( T∑

t=1

∑
y∈Bk(xt,D)

δ(c, y)
)
/ Z(x) (2)

This modification has the result that multiple repetitions of
a particular action leads to less over-confident probability
estimates than if the sounds produced by the actions were
assumed conditionally independent. To combine across ac-
tions, the per-action probabilities are averaged. Each per-
action probability is initialized to uniform and is replaced
with the result of eq. (2) once the action has been taken.

Model 2: Our second model takes a more principled ap-
proach to modeling the fact that an action on an object legiti-
mately yields a distribution over object similarities. Our rea-
soning is that because the underlying causes for sounds are
a complex relationship between shape and material proper-
ties of the object, gripper, and floor, acoustic similarities are
only indirectly related to the object category through these
(always hidden) properties. Therefore it is important to ex-
plicitly model the fact that some objects sound somewhat
like other objects under certain actions (for instance, most
empty containers sound quite similar when shaken).
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Figure 2: Example beliefs and rewards for three objects as a function of time, using acoustic Model 1. Left: the heuristic (i.e.,
Hand-coded) policy, Right: the learned InfoMax policy. The top three graphs in each sugfigure shows the evolution of the
robot’s beliefs about the object categories as it takes actions. The bottom shows the scaled negative entropy reward over time.
Note that after visiting each object once, the reward trends downward for the heuristic policy, whereas the learned policy has
learned to take illegal actions once it has visited each object, thus keeping its reward high (best viewed in color).

We address this by using a generative model in which
each action-object category specifies a Dirichlet distribution
from which a particular distribution of sound-similarities
(estimated using eq. (1)) are sampled. Thus the probability
of generating probabilities φ by taking action a on an object
of category i is

p(φ|a, i) = Γ(
∑N

j=1 αaij)∏
j Γ(αaij)

N∏
k=1

φαaik−1
k (3)

where αai = (αai1, ..., αaiN ) are the parameters for a
Dirichlet distribution over acoustic probabilities for object
category i under action a. This model treats elements of φ
as functionally different than category labels – they could be
replaced with a different type of sound feature probability
measure using some other method (for instance a Gaussian
mixture model over spectral features). The posterior proba-
bility of a category given a set of actions can now be cal-
culated by taking the product of the probabilities estimated
with eq. (3) for each action and then normalizing.

Learning an InfoMax controller
Once we have specified an acoustic model, we can use re-
inforcement learning to find a policy for selecting actions.
Let qt be a d-dimensional vector combining the robot’s cur-
rent beliefs about the objects and its known internal state
(described below), and define the set of possible actions
A = {push, lift, shake-pitch, shake-roll, set-down, drop,
move-left}. Then let the function Fθ : Q → A be a deter-
ministic controller with k-dimensional parameter θ which at

each time t takes as input a state-variable qt and outputs an
action at.

Representation

To construct qt, let p′ be an egocentric representation of
the agent’s current beliefs, i.e., p′1 is the agent’s beliefs
about the object directly in front of it and p′2 through
p′M are the agent’s beliefs about the remainder of the
M objects, arranged from left to right. Then let qt =
(p′1, ..., p

′
M , c′1, ..., c

′
M , ψ(t)) where c′ is an egocentrically

arranged vector of counters of how often each action has
been taken on each object, and ψ(t) = (ψ1(t), ψ2(t), ψ3(t))
is a vector of radial basis functions of the time t, which al-
lows the learned policy to depend on the number of steps
taken in an episode.

Let an episode (or history) h = (q1, a1, ..., qT , aT ) be a
sequence of T state-action pairs induced by using a con-
troller with parameters θ. We can then define the reward at
time t of episode h as the (scaled) negative Shannon entropy
of the belief distribution, averaged over all objects, i.e.,

R(qt|h) = 1

a

(∑
i,k

p
(t)
ik log p

(t)
ik + b

)
(4)

where p(t)ik is the agent’s belief that object in position k is an
instance of category i based on the experiences in h up to
time t. Constants a and b are simply to scale reward to [0, 1]
and are fixed beforehand.
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Figure 3: Example beliefs and rewards for three objects as a function of time, using acoustic Model 2. Left: the heuristic (i.e.,
Hand-coded) policy, Right: the learned InfoMax policy. Note that in this case uncertainty continues to decrease as repeated
actions are taken. However the learned policy, though better, still stops gathering information after awhile.

Policy Learning
In the current setting, the goal of the learning algorithm is to
find parameters θ that maximizes the expected total reward
over episodes of fixed length L, i.e., maximize the objective

Φ(θ) = Eh[
L∑

t=1

R(qt|h)p(h|θ)]. (5)

Although many optimization algorithms could work in this
situation, in this paper we learn the parameters from experi-
ence using the Policy Gradients with Parameter Exploration
(PGPE) algorithm (Sehnke et al. 2010), a model-free rein-
forcement learning algorithm for POMDPs which performs
exploration by sampling in the parameter space of a con-
troller. Rather than computing gradients for the objective
function with respect to the controller’s parameters, a gra-
dient is instead estimated over a set of hyperparamters from
which parameters θ of a controller are sampled. For com-
pleteness we give a brief description here but we defer to
(Sehnke et al. 2010) for details.

Let θn be a d-dimensional vector, so that we can rewrite
θ = (θ1, ..., θk) as a set of weight vectors for the function:
Fθ(qt) = argmaxa θaqt, i.e., it calculates one linear combi-
nation of the inputs qt per action, then selects the maximum
scoring action. For each learning episode, each parameter of
θ is independently sampled from a one dimensional normal
distribution with mean and variance μi, σi, which we collect
together as ρ = (μ1, ...μd, σ1, ...σd).

PGPE performs a gradient descent procedure over ρ to
optimize policies of the form

p(at|qt, ρ) =
∫
θ

p(θ|ρ)δ(Fθ(qt), at) dθ (6)

Let r(h) = R(qT |h), and let H be the set of all possible
histories. The expected reward is then given by

J(ρ) =

∫
Θ

∫
H

p(h, θ|ρ)r(h) dh dθ (7)

Differentiating with respect to ρ and using the identity
∇xy(x) = y(x)∇x log y(x), we have

∇ρJ(ρ) =

∫
Θ

∫
H

p(h, θ|ρ)∇ρ log p(h, θ|ρ)r(h) dh dθ (8)

Noting that h is conditionally independent of ρ given θ, this
can be estimated with a sample of histories, by repeatedly
choosing θ from p(θ|ρ) and then running the agent with this
policy to generate a history h. Thus, given a set of rollouts
(h(1), ..., h(N)) generated from sample controllers with pa-
rameters (θ(1), ..., θ(N)),

∇ρJ(ρ) ≈ 1

N

N∑
i=1

∇ρ log p(θ
(i)|ρ)r(h(i)) (9)

Stochastic gradient descent can now be performed until a lo-
cal maximum is found. (Sehnke et al. 2010) show that with
proper bookkeeping, each gradient update can be efficiently
performed using just two symmetric samples from the cur-
rent ρ.

Experiments
We performed a number of experiments to compare poli-
cies using the two different acoustic recognition models.
As described in the previous sections, an initial database
of 20-200 samples per action-object pair was first collected.
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These samples were used to train the SOMs used to convert
acoustic samples into strings. Using the string alignment dis-
tances, we computed the kNN results for each sample with
that sample left out in a leave-one-out procedure. For model
2, these kNN results were used to estimate the parameters of
the action-object specific Dirichlet distributions. Given this
database, we could then perform experiments in simulation
by sampling sound-action sequences called for by the con-
troller.

For each model, we performed experiments in two condi-
tions. In the independent actions condition, any action could
be taken at any time, and the beliefs were updated as de-
scribed above at each timestep. In the dependent actions
condition, we enforced the sequential dependencies inherent
in manipulation, e.g., for most actions the object must first
be in-hand due to a previous grasp, a drop or shake must
have been preceeded by a lift, a drop makes the object no
longer in-hand, etc. In this case, if the robot attempted an il-
legal action, the beliefs were simply not modified, similar to
a move action, and otherwise everything remained the same.

We created a large number of conditions, varying the
number of objects, the size of the horizon, and variations in
the acoustic models. For each setting, we trained InfoMax
policies for 10,000 episodes of PGPE. For each episode, a
set of object categories are randomly chosen, and the robot’s
beliefs about the object categories are initialized to uniform.
Then at each timestep, provided the composite state vector
qt, an action is selected using the current policy. The robot’s
joint beliefs are updated if appropriate, and the intrinsic re-
ward is returned. Each full learning trial of PGPE was re-
peated 16 times and all results show either averages across
these 16 experiments or example rollouts from the θ result-
ing in the highest average reward across all runs.

Results
Most of our results can be summarized by studying the case
of 3-objects with 45 step episodes in a few different condi-
tions. All graphs show the dependent actions case. In most
cases we compare the performance of a learned policy to the
performance of the heuristic “hand-coded” policy.

Our first result is that, in all cases, InfoMax learned a good
policy that tended to perform all actions on each object and
then move. As shown in Tables 1 and 2, the learned poli-
cies always led to accurate predictions about all three ob-
jects by the end of the episode, and were competitive with
heuristic policies. When the dependencies between manipu-
lations were enforced, InfoMax also always learned policies
that chose legal orderings of actions.

However as we can see in Figures 2 and 3, the learned
policies often had unintuitive characteristics. Each graph
shows an example rollout of a policy. The horizontal axis
shows the action performed at timestep t. The vertical axis of
the top three subplots shows the category probabilities, and
the bottom subplot shows the intrinsic reward after execut-
ing that step in the policy. On the left of each figure, we can
see that the hand coded policy executes a fixed grasp, lift,
shake-roll, shake-pitch, drop, move-left sequence repeatedly.
The right shows the learned policy, which was adaptive.

Fig. 2 shows the problem for acoustic Model 1: after per-
forming each action on each object once, the reward (“cer-
tainty”) tends to decrease. This is because additional ev-
idence leads to less peaked distributions over the sound-
similarities. However under Model 2 (Fig. 3), this is not the
case – more evidence about the distribution of sound sim-
ilarities continues to reduce entropy in the object category
beliefs. In Fig. 4 we can these trends clearly from the reward-
per-step averaged across 100 trials for each policy.

Fig. 2 shows that the InfoMax policy under Model 1 has
learned a clever trick to avoid increasing uncertainty: Af-
ter taking each action on each object exactly once, it takes
illegal actions that don’t change the beliefs, so that it can
“bury its head in the sand” from that point on. Fig. 3 shows
that Model 2 improves this situation somewhat – indeed the
policy does repeat particularly informative shake actions on
each object – however it too starts taking illegal actions af-
ter visiting each object. However in this case, the policy still
achieves superior classification accuracy.

Figure 4: Average reward per step for Models 1 (top) and 2
(bottom).

Finally, we can see in Tables 1 and 2 that with Model
1, the handcoded policy ultimately outperforms the learned
policy even though its uncertainty is greater on average.
However using acoustic Model 2, the learned policy, which
repeats some actions on objects, is consistently more accu-
rate than the hand-coded policy. This makes sense because
under this model the agent can reduce uncertainty by better
estimating a distribution over sound similarities instead of
seeking a single, maximum sound similarity.

Step Number 1 4 9 13 18 30 45
Model 1 Learned 22.7 36.0 60.7 72.7 94.0 94.7 94.7
Model 1 Handcoded 20.0 34.3 59.0 75.0 94.7 98.0 99.3
Model 2 Learned 22.0 35.0 47.0 67.0 77.3 98.0 98.0
Model 2 Handcoded 19.3 35.7 59.0 73.7 93.7 97.3 99.3

Table 1: Classification accuracy (percent) per step with de-
pendent actions

27



Step Number 1 4 9 13 18 30 45
Model 1 Learned 29.7 38.3 64.0 69.7 94.0 99.0 98.7
Model 1 Handcoded 20.0 36.7 53.3 69.7 81.3 98.3 99.3
Model 2 Learned 37.0 40.7 52.0 71.0 75.0 99.3 99.3
Model 2 Handcoded 20.3 37.7 49.3 68.0 82.3 97.7 97.7

Table 2: Classification accuracy (percent) per step with in-
dependent actions

Discussion and Conclusions
From these results we can draw a few conclusions. First,
we have shown that InfoMax control policies can indeed be
learned with complex, real-world robot sensors and manip-
ulation actions. We also have shown that our hierarchical
acoustic model consistently improves accuracy by model-
ing distributions of sound similarities. Combining this im-
proved model with InfoMax control, our learning agent is
consistently better at identifying object categories than an
agent that uses a non-adaptive hand-coded policies with ei-
ther acoustic model.

We have also found the unintuitive result that the negative
entropy reward can lead to policies that deliberately avoid
new evidence in order not to increase uncertainty, which re-
sults in decreased accuracy. This gives us a sense of two dif-
ferent emergent “personalities”: one which seeks clear-cut
distinctions, and another which seeks more complete knowl-
edge about the world. This raises questions about when In-
foMax control makes sense. In a lifelong learning or devel-
opmental robotics setting, where the robot can’t always get
ground-truth labels from a human, InfoMax might be a good
reward to use until a specific task is provided. However this
could lead to pathological behaviors if the internal models
are not sufficient to capture important dependencies in the
world, and it has no way of improving the model itself. This
suggests that if the robot builder knows beforehand how the
robot will be used, for instance to classify or fetch objects,
then it may be better to directly optimize the policy for that
goal in order to compensate for possible deficiencies in the
underlying models.
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