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Abstract 
A general perceptual model is proposed for Eldercare Robot 
implementation that is comprised of audition functionality 
interconnected with a feedback-driven perceptual reasoning 
agent.  Using multistage signal analysis to feed temporally 
tiered learning/recognition modules, concurrent access to 
sound event localization, classification, and context is 
realized.  Patterns leading to the quantification of patient 
emotion/well being can be inferred using a perceptual 
reasoning agent.  The system is prototyped using a Nao H-
25 humanoid robot with an online processor running the 
Nao Qi SDK and the Max/MSP environment with the FTM, 
and GF libraries. 

Introduction 
As humanoid robots become more prevalent and 
widespread in our society, movement toward real 
perceptual features must be accomplished.  Without basic 
human perceptual abilities, an eldercare robot is just a 
static device.  As the autonomy of the eldercare robot is 
increased to greater and greater levels, the need for real 
perceptual ability looms.  The higher the level of 
perception that can be achieved, the more likely the patient 
will be to accept and trust the robot (Kanda, Ishiguro and 
Ishida 2001).   
 Researchers have been active and quite successful with 
specific areas of vision and audition.  This research has 
failed however to see the overlap that exists across 
applications and methodologies.  A general perceptual 
model would facilitate simultaneous access to perceptual 
features and permit the design of a highly autonomous 
eldercare robot.  The combination of current research from 
several subfields provides a basis for the general auditory 
model and a framework for making best case guesses in a 
limited temporal window.  Reinforcement learning directly 
elicited from the verbal mechanism of the eldercare robot 
combined with contextual knowledge is used to promote 
the mitigation of classification error and uncertainty.  
 Although the vision aspects of this model are not 
elaborated, a similar approach could be used: multi-tiered 
analysis that reduces information to features, recognition 
and classification of objects, patterns and contextual 

information that the perceptual reasoning agent in turn 
must handle.  

Eldercare Interaction 
While vision is the most discussed perceptual features in 
artificial intelligence textbooks (Russell and Norvig 2010), 
audition could prove to be the most useful in eldercare 
robot implementation (Edwards 2010).  Human audition 
provides semantic, contextual, and emotive extraction of 
verbal communication and is a primary tool of the trained 
psychotherapist.  Humans have an inherent desire to 
verbally communicate, and when peers are able to discern 
the meaning and inflection of the spoken words, they are 
perceived to be empathetic (although this is only true when 
the listening process is confirmed to be active by an 
emotive gestural response) (Drollinger, Comer and 
Warrington 2006).   
 In order to be effective then, an eldercare robot must be 
able to extract short, medium and long-term information 
from sound sources, while reasoning about structure and 
context.  A system that is only trained to identify body-fall 
noises, spoken words or single word emotive likelihood, 
would miss information that arises from long-term 
complex sound event structures (Istrate, Binet and Cheng 
2008).  Ideally the eldercare robot would be able to track 
the speaking intonation and pacing of the patient, which in 
turn could infer emotional state and wellness (Edwards 
2010).  It is important to note however, that only by having 
some Natural Language Processing or NLP abilities, could 
automated speaking intonation and pacing lead to any of 
the inference mentioned.  In regular speech for example, 
inflection often is used for questions or is used to place 
emphasis on important words.  To create relative tracking 
then, normal speech must be observed within a holistic 
NLP view.  A phoneme recognition module (Bloit and 
Rodet 2008) and NLP module could be generalized to 
provide sound classification and pattern clustering.  Even 
with the complexity of tracking emotion and speech in 
mind (Vaughan et al. 2008), recognition of words and a 
close approximation of the speaker’s f0 or fundamental 
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frequency provides insightful information and has been a 
common element in emotion speech research (Dellaert, 
Polzin and Waibel 1996).  Even with the successful 
identification of a single distress sound event (or a word 
that has a highly-likely distress f0 probability), an eldercare 
robot would still need a memory pool to compare the 
existing patterns to presently emerging ones in order to 
determine if the spoken word was just a question, or 
indicative of other meaning.   
 To facilitate the needed patient specific adaption, 
reinforcement learning must be used, making the eldercare 
robot completely adaptive to the patient’s methods of 
communication and sensitive to behavioral changes.  Other 
necessary components of a complete system would be a 
voice synthesizer for verbal query and an emotive gesture 
synthesizer for displaying patient concern, neither of which 
will be further elaborated. 

General Auditory Model (GAM) 

 
Figure 1.  
 
A Modular General Auditory Model is proposed that is 
comprised of the high-level components depicted in figure 
1.  It is based on a preexisting musical temporal model 
(Jehan 2005) combined with a perceptual reasoning agent.  
The time axis above shows the temporal scale that governs 
the small and medium moving windows.  Signal analysis is 
performed in the 5-25ms range producing sound descriptor 
states while segmentation and classification are performed 
in the 100-1000ms range producing sound events.  
Information that is to be retained with semi permanence is 
stored in the perceptual reasoning agent, which in turn uses 
a Data Base that can be queried by the medical overseer.  
Each temporal window extracts some auditory information 
and reduces the resolution of signal.  This design not only 

decreases the data complexity but also minimizes the 
search space in each window, providing real-time 
response.  The perceptual reasoning agent uses the 
recognized and reduced information to determine what 
events and patterns are most likely, passing a message that 
is indicative of its best guess. 

 
Figure 2. System Overview 
 
 Before incoming sound pressure waves can be processed 
in any capacity, they must first be transduced by a 
microphone or microphone array.  For human-like sound 
localization, two small-diaphragm condenser microphones 
spaced approximately 15-17cm apart with a pinna-like 
baffles are needed.  Computational methods exist that do 
not need the physical pinna-like structures (Liu et al. 
2000). 
 Once the microphone transduces the sound pressure 
wave to a low-voltage and high impedance signal, it is 
buffered to a lower impedance line-level signal by a 
microphone preamplifier before the signal passes to the 
Analog to Digital Converter, which in turn constructs the 
Pulse-Code Modulated or PCM stream.  The quality of the 
PCM stream is dependent on the bit-depth, sample rate, 
and precision of the internal sample clock.  Proper 
selection of microphone, preamp, and ADC ensure that 
data coming in to the GAM are of the best quality 
(Borwick 1995), which in turn yields better overall 
performance. 
 

Analysis: From Signals to Sound Descriptor States 
The analysis section begins with a digital PCM stream, so 
the signal can be processed and transformed into 
meaningful information.  Several contiguous samples 
(called a window) are collected from the PCM stream 
(which includes the window type, size, and overlap).  The 
family of functions that map time domain signals to 
frequency domain signals are called Fast Fourier 
Transforms and are used in many of the algorithms that 
form sound descriptors (Frigo and Johnson 2005).  
Because a general system is desired, a two-tier analysis 
window is used as depicted in figure 3. 
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Figure 3.  Two-tiered Analysis Window 
 
 In the main analysis window, fundamental frequency 
and periodicity are calculated with the Yin algorithm (de 
Cheveigné and Kawahara 2002) as well as the loudness, 
angle and azimuth (Liu et al. 2000).   
 In each of the analysis sub-windows, the spectrum 
moments are calculated from the power spectrum: the 
centroid = m1, square root of the spread = sqrt(m2), 
skewness = m3 and kurtosis = m4.  In addition, 13 Mel-
frequency cepstrum coefficients or MFCCs are computed 
from the Discrete Cosine Transform of the log of the Mel-
bands, as well as the delta and delta-delta inter-frame 
difference functions.  Collectively these sub-window 
parameters approximate the shape of the signal spectrum 
and changes made to it. 
 By setting the main window’s hop size to the same value 
used in the sub-window’s FFT, the resulting scaled vectors 
can be recombined into a normalized matrix called a sound 
descriptor which updates with every new hop.  This matrix 
of 46 sound descriptors excluding localization angle and 
azimuth (which are only used for determining where the 
sound is emanating from) essentially provides access to all 
the aspects of the auditory stimulus needed for 
segmentation and classification. 
 
Segmentation and Classification: From States to Events 
Sound descriptor states are joined together sequentially and 
segmented by a threshold function (using loudness, 
periodicity, and the spectral centroid).  This sequence can 
then be referred to as a sound event, which is a medium 
time scale unit in the range of 200-1000ms.  
 To classify both English phonemes and general sounds, 
modifications to the Short-Time Viterbi (STV) Hidden 
Markov Model (HMM) algorithm (Bloit & Rodet 2008) 
were made. This algorithm achieves near offline accuracy 
with online latencies that allow best guessing within the 
limited sliding window calculation.  It would be best, given 
the nature of eldercare to have a large corpus of region 
specific aged speech (or even better to train the system 

with the patient’s voice), but since this doesn’t currently 
exist, a freely available American English corpus should be 
used instead to train the phoneme models (Pitt et al. 2007).  
In addition to phonemes, the training set should include all 
manner of environmental sounds, which could be quite a 
large task if the application of eldercare use was not 
already selected.  And eldercare specific sound corpus 
would include a wide variety of household objects, alarms, 
sirens, body-fall sounds and musical excerpts.  The STV 
sound classification method takes a 39 MFCC value sub-
matrix from the sound descriptor state.  A variable state 
size observation window is used to calculate the Viterbi 
path yielding a real-time guess of the maximum likelihood 
of the sound event (Bloit and Rodet 2008). 

 
Figure 4. left-to-right HMM with state skipping. 
 
 The remaining seven features feed a left-to-right HMM 
(depicted in figure 4) purpose is to classify inflection 
quality in the voice of the patient (Bevilacqua et al. 2009). 
F0, loudness, periodicity, and the spectral moments are 
used to train the inflection quality, although other 
researchers have used these features to train so called 
emotive states:  Anger, Sadness, Happiness, Fear, Disgust, 
Joy and Surprise (Ververidis and Kotropoulos 2003).  It is 
beyond the scope of this discussion to determine whether 
emotive states in speech are truly being measured, or 
whether inflection quality is a more accurate name.  
Assuming inflection quality is more readily observable, the 
enumerated approximations to Anger, Sadness, Fear and 
Disgust could be used to infer the presence of a distress 
emotive state.  As with the sound recognition, a real-time 
guess of maximum likelihood is produced as synchronized 
intervals. Both of these guesses are then passed along to 
the perceptual reasoning agent where context and relevance 
is determined. 
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Perceptual Reasoning Agent 
 

Figure 5. 
 
The main goal of the perceptual reasoning agent is to 
determine if phonemes or sounds are present by applying a 
clustering model to the incoming event buffer as depicted 
in figure 5.  The event buffer is a (10-60s) recirculating 
array that appends a temporal distance stamp to incoming 
guesses.  An online clustering method must be used at this 
stage as well, incorporating elements of a language model 
for phoneme-to-text  (Mori, Takuma and Kurata 2006) and 
sound event- to-sound structure tasks (Jehan 2005).  
Training of the clustering model occurs from a speech 
corpus and the normal speech from the patient.  With a 
fully autonomous system, the patient’s speech would 
slowly remove the presence of the original training 
weights, decreasing general recognition accuracy and in 
turn increasing the recognition of the patient’s speech.  
Given a bounded time frame, the clustering module applies 
its best guess using a dictionary of words and sound 
patterns, giving preference to word recognition.  Clustered 
words are output as text, while sound patterns output by a 
unique ID.  The output in a complete system would 
connect to behavioral or other reasoning mechanisms.  The 
arrow leaving the perceptual reasoning agent shown in 
figure 5 is used to provide reinforcement learning to 
specific recognized words.  In the case of distress sounds, 
confirmation of a verbal query would do nothing but 
proceed, while a declination would cause the input arrow 
on the left to make modification to the knowledge base.  
This iterative technique makes long-term adaption feasible 
and increases the likely hood of recognizing disturbances 
in the patient’s voice. 
 

Prototype 
A proof of concept system was constructed with an 
Aldebran Robotics Nao H25 Humanoid Robot (Academic 
Edition v3) and an online processor (Apple MacBook Pro 
laptop) communicating via Ethernet (for reduced latency 
and increased speed).  Due to a flaw in the H25 design (the 
microphones are located next to a CPU fan), external 
pressure gradient condenser microphones were used to 
feed discrete Grace Audio Designs M101 microphone 
preamps and an RME Fireface800 ADC connected to the 
laptop.  This system provided an idealized input signal 
which was essential for evaluating the software 
components and algorithms used in this tiered design. 
 The GAM software was constructed using MAX/MSP 
visual object-based  design software (Puckette et al. 2011) 
with the addition of the IRCAM FTM, MNM, and GF 
libraries (Schnell et al. 2005) (Bevilacqua et al. 2009).  
Models were built with the Buckeye Speech Corpus (Pitt et 
al. 2007) as well as a corpus of household objects and 
environmental sounds recorded by the author using a Sony 
PCM-D50 field recorder.  Although lowpass filtering and 
downsampling of the speech corpus was already 
conducted, full bandwidth sound recordings with a 44.1 
KHz sample rate were used.   
 The GAM was realized as described in figure 1 with 
separate analysis, classification and perceptual reasoning 
modules.  Because MAX/MSP provides objects for 
network communication, audio processing, vector/matrix 
operations and SQLite3 DB functionality, it was the ideal 
experimental test bed for perceptual this AI research.  
Word/sound pattern recognition was conducted by using 
KNN style clustering trained with keywords and sound 
patterns that were thought to be useful for eldercare use.   
 Messages were then passed over the network to the Nao 
H25 using the Nao Qi SDK, where behaviors were 
launched and the prebuilt text-to-speech vocal synthesizer 
provided patient query.  Responses were used to make 
modification to the knowledge base when in contrary to the 
best guess, and confirmation was defaulted when a 
response was lacking within the event buffer after a 
reasonable time period. 
 

Conclusion 
The eldercare robot is an ideal vehicle for evaluating 
integrated perceptual models. The physical interaction with 
the environment and patient allow the audible confirmation 
of wellness.  This confirmation process provides reliable 
training data, making the perceptual reasoning agent more 
useful with time and capable of learning in a very human-
like manner (Yule 2010).   
 Methods in the analysis and sound classification phase 
have yet to be extensively compared with alternate 
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methods. Further evaluation of varied learning methods, 
parameters and inputs is needed.  Preliminary results are 
promising and could lead towards the adoption of a more 
generalized auditory model in humanoid robot design.  The 
complex work of identifying overlap in analysis methods 
and machine learning algorithms still remains, but 
immerging research in online learning offers great promise 
(Bifet et al. 2010) (Bevilacqua et al. 2009) (Maxwell et al. 
2009) (Schuller et al. 2010). 
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