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Abstract

Current methods for Multi-AUV cooperation suffer in
low communication environments. State of the art meth-
ods employ auctioneering or planning to determine a
single AUV’s task. These systems require communica-
tion for efficient task selection. Most strategies assume
a teammate is inoperable if a communication timeout
is reached which reduces overall team efficiency. In-
cluding teammate prediction has been shown to miti-
gate efficiency degeneration due to low communication.
This position paper posits that multi-AUV cooperation
efficiency will improve with the combination of robust
teammate prediction along with verification using be-
havior recognition.

Introduction

Multi-robot systems are capable of addressing many needs
because they are robust to failure, cost-effective, and can
be more efficient than single robot solutions. In particu-
lar, the autonomous underwater vehicle (AUV) community
has addressed environmental scientific investigation (Man-
ley 2004) and military scenarios (Castelin and Bernstein
2004) using multi-AUV solutions. Multi-AUV systems not
only need to cooperate efficiently but do so in an environ-
ment which makes communication difficult.

State-of-the-art methods in multi-AUV systems use auc-
tioneering or planning methods for cooperation. Rajala et
al. employs cooperation through the use of time division
multiple access (TDMA) for AUV formation control dur-
ing missions (Rajala, O’Rourke, and Edwards 2006). If an
agent does not communicate during their specified time slot
then they are assumed to be inoperable and another AUV
takes its role in the formation. Examples include the loss of
communication from the leader. In such a scenario, another
AUV will assume the leader role in the formation. Sariel et
al. uses an auctioneering based method for cooperation of a
heterogeneous AUV team in the mine counter measure mis-
sion (Sariel, Balch, and Erdogan 2008). Teammates with a
lower task cost that do not respond to an auction are simply
not considered for a task though it would be more efficient.
Sotzing and Lane utilize a hybrid architecture in which a de-
liberative system plans the next task based on a hierarchical
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planner (Sotzing and Lane 2009). The latter two cooperation
schemes use a model of both the tasks and their teammates.
Continual broadcast of global task completion and current
progress updates these models. This also ensures that infor-
mation propagates through the network. Based on the mod-
els, the agents auction for or plan a task, accordingly.

A limitation with these cooperation systems is their as-
sumption that an agent is inoperable if it does not communi-
cate within a certain threshold of time. Such an assumption
is not always the case and introduces inefficiency such as in
the form of repeated tasks. This occurs especially in littoral
environments, as there are many communication barriers for
acoustic communication. Sotzing and Lane improve upon
the assumption of a lost teammate model by utilizing loca-
tion and task prediction based on the Recursive Modeling
Method (Durfee 1995) , (Sotzing and Lane 2009). The ba-
sic premise is that they predict a teammate’s position based
on the last communicated state. If the predicted location in-
dicates a completion of the last communicated task then a
prediction of the teammate’s next task is performed. Thus,
an AUV will determine its own next task based on the con-
tinued communication or prediction of its teammates. The
authors validated their improvement in overall system per-
formance.

Current systems do not employ any verification tech-
niques of their predicted assumptions. An AUV could em-
ploy behavior recognition as the tool for verification as it can
physically proceed to a predicted location and verify a team-
mate’s current task or true failure. Given current research in
behavior recognition, a merger with teammate prediction is
a natural progression.

Improved Cooperation

An improved teammate model will allow for incorporation
of received communication, prediction, and verification of
behavior through behavior recognition. Such a model will
be robust to dynamic environmental influences which a pre-
diction alone model may not be robust enough to handle.

Behavior Recognition

Current systems are able to recognize agent behavior using
graphical models. Original work was presented by Han and
Veloso in which a soccer playing robot’s behavior was rec-
ognized using an Hidden Markov Model (HMM) through
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the use of an overhead vision system (Han and Veloso 2000).
Feldman and Balch use HMMs to recognize honey bee be-
haviors after manually labeling actions (Feldman and Balch
2004). Vail et al. use Conditional Random Fields (CRF) as
an improved model to determine the behavior recognition of
tag playing robots (Vail, Veloso, and Lafferty 2007). In more
related work Baxter et al. use real AUV data to train a flat
HMM for behavior recognition during post mission analy-
sis (Baxter, Lane, and Petillot 2009). Weaknesses of these
systems are that they require continual observation of an
agent either through overhead sensory input or post mission
continual tracks. However, none of these systems address an
agent observing another in situ.

Verification

A great improvement in multi-AUV cooperation could be
made if agents verified their teammate’s predicted behavior
through the use of behavior recognition. This occurs in daily
human interaction when a required voice communication
does not get a response. The natural course of action is to
get closer or attempt another communication medium with
the individual. As an AUV agent finishes a task and another
must be chosen, it must choose based on task and teammate
models which are updated through communication and pre-
diction. If an agent does not have enough confidence in its
prediction of a teammate then verification through investi-
gation is in order. During the process of traveling to a team-
mate’s predicted location, a communication may occur as
they may have been out of range or occluded. If the sought-
after agent is encountered without communication during
investigation then behavior recognition can be performed.
This author is currently investigating the use of a forward-
looking sonar to detect teammates in situ. Based on the
teammate’s trajectory, it is believed that a trained HMM can
determine if a specific behavior is being performed. Given
an updated model of its teammate, the agent can now deter-
mine the next appropriate task.

Difficulties

There will be difficulties in using behavior recognition for
verification, the first of which is sensing. In an AUV environ-
ment, such as in a littoral area, a sonar will need to discrimi-
nate a teammate from false positives and minimize false neg-
atives. Both agents will also be moving in the environment
while one is trying to recognize the other’s behavior, making
sensing ever more difficult. As a remedy, upon proper iden-
tification of a teammate it’s motion must be transformed into
a proper reference frame. Baxter et al. attempt to make be-
havior recognition agnostic to the environment by labeling
actions and behaviors with respect to the cardinal directions
of the environment (Baxter, Lane, and Petillot 2009). Yet it
still requires global understanding of proper cardinal direc-
tions of a reference map. Finding methods that are agnostic
to any global reference will aid in behavior recognition as it
could account for both the agents moving in the environment
concurrently. Another difficulty that has yet to be explored
is at what point is verification required. There must be a bal-
ance between the confidence of a prediction and the cost of
verification versus the cost of repeating a task.

Conclusion

Cooperation among a multi-AUV team requires improve-
ments in low communication scenarios. Current coopera-
tion schemes are just starting to leverage teammate predic-
tion. Behavior recognition systems allow for an agent to ver-
ify teammate tasks. Accurate and robust teammate predic-
tion along with verification through either communication
or behavior recognition will greatly increase the efficiency
of multi-AUV teams in low communication environments.
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