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Abstract

In many multiagent scenarios, groups of participants (known
as coalitions) may attempt to cooperate, seeking to increase
the benefits realized by the members. Depending on the sce-
nario, such cooperation may be benign, or may be unwelcome
or even forbidden (often called collusion). Coalitions can
present a problem for many multiagent systems, potentially
undermining the intended operation of systems. In this paper,
we present a technique for detecting the presence of coali-
tions (malicious or otherwise), and identifying their mem-
bers. Our technique employs clustering in benefit space, a
high-dimensional feature space reflecting the benefit flowing
between agents, in order to identify groups of agents who are
similar in terms of the agents they are favoring. A statistical
approach is then used to characterize candidate clusters, iden-
tifying as coalitions those groups that favor their own mem-
bers to a much greater degree than the general population. We
believe that our approach is applicable to a wide range of do-
mains. Here, we demonstrate its effectiveness within a simu-
lated marketplace making use of a trust and reputation system
to cope with dishonest sellers. Many trust and reputation pro-
posals readily acknowledge their ineffectiveness in the face
of collusion, providing one example of the importance of the
problem. While certain aspects of coalitions have received
significant attention (e.g., formation, stability, etc.), relatively
little research has focused on the problem of coalition identi-
fication. We believe our research represents an important step
towards addressing the challenges posed by coalitions.

Introduction
The field of multiagent systems is concerned with systems
where multiple, independent entities interact with one an-
other. While multiagent systems are often classified as either
cooperative or competitive, the reality is often more com-
plex. For example, in electronic marketplace scenarios com-
posed of agents that buy and sell goods, each agent may be
a self-interested utility maximizer, but at the same time de-
pend on other agents (its buying/selling partners) to achieve
its goals. In such a scenario, ‘cooperation’ of a sort (in
the form of behaving honestly) may be critical to success—
honest agents may be more likely to find trading partners in
the future. Thus, agents may display a high degree of mutu-
ally beneficial behavior, despite being independent.
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Cooperation may go further, however. Agents may in-
tentionally seek to coordinate their activities in some way,
with the expectation that coordinated effort will further their
goals (whether shared or independent). We refer to a group
of agents engaging in coordinated activity as a team, or a
coalition. Coalitions may seek to increase their scores in a
game, enhance profits, improve competitive positions, pro-
vide protection from other agents, damage competitors, etc.,
depending on the scenario.

Coordinated activity by a team may be benign, or even
desirable. A real-world example would be a ‘neighborhood
watch’ program, where individuals cooperate for their mu-
tual security, but no harm is done to others. In many sce-
narios, however, agents may cooperate despite the fact that
this may be unwelcome or forbidden. For example, players
may cooperate in a game such as poker (which is intended
to be played individually) to increase their winnings, at the
expense of other players. Such activity is often considered a
form of cheating; we refer to it specifically as collusion.

In many situations, it can be useful to detect the presence
of teams, and/or to identify team members. For example, if
one can determine which players are colluding in a game,
one might penalize or expel those players, act to hinder their
activities, etc. (Alternatively, the power of detection might
serve as a deterrent to such cooperation.)

In this paper, we present a technique for detecting the
presence of coalitions in an environment, and for identi-
fying coalition members. We believe that our approach is
broadly applicable to a range of activities and scenarios. It
is worth noting, however, that identifying teams is likely to
be more difficult (and potentially more valuable) where such
teams are unwelcome; colluding agents may wish to go un-
detected. For this reason, we focus on such scenarios here.
We note several examples, to illustrate the scope and real-
world importance of this issue:

• Trust and reputation systems are employed in multiagent
systems where an agent’s success depends to a large de-
gree on the reliability or trustworthiness of the agents with
whom it chooses to interact. Such systems are susceptible
to collusion, as detailed in the Related Work section.

• ‘Shilling’ and ‘astroturfing’, where false opinions are
given by coalition members to create the (false) impres-
sion of widespread public support (or opposition) for a
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position, product, etc.

• Cheating in games, particularly forms of gambling such
as poker. Such collusion is a significant problem, even
reported in the mainstream media (e.g., (Katz 2005)).

• Insurgent activity in a military setting, or terrorism. Mem-
bers of such a coalition attempt to ‘blend in’ with the pop-
ulation, so we cannot directly observe group membership.

Scenario Characteristics Certain distinguishing charac-
teristics of this range of scenarios should be noted. First, we
can identify each individual in the environment (although
we might not know who is actually controlling the identity,
e.g., in the case of a user account). Second, while certain
actions are observable, others are not. In particular, we have
no access to communications between colluding parties, nor
knowledge of their sharing resources or sharing of benefits
outside the system. Finally, and importantly, we assume no
knowledge of the plans or tactics that may be employed;
even the goals of a possible coalition may be unknown.

Related Work
Trust and reputation systems aim to help agents choose trust-
worthy partners and/or avoid untrustworthy ones. Typically,
agents provide reviews of their experiences with other par-
ticipants; when deciding whether or not to trust a potential
partner, an agent can make use of the information in these
reviews. While a multitude of trust and reputation systems
have been proposed (e.g., (Jøsang and Ismail 2002; Kerr and
Cohen 2010b; Teacy et al. 2006)), there is broad acknowl-
edgement by researchers of the vulnerability of trust and
reputation proposals to coalitions (e.g., (Dellarocas 2000;
Jurca and Faltings 2007)). While efforts are made to cope
with unreliable reviews, systems are often susceptible to two
well-known forms of collusion (Dellarocas 2000):

• Ballot-stuffing, where coalition agents give false positive
reviews to their teammates, in order to inflate the reputa-
tions of the recipients.

• Bad-mouthing, where coalition agents give false negative
reviews to competitors, in order to damage the reputation
of the competitors.

The goal of both of these attacks is to improve team mem-
bers’ chances of being selected by another agent.

Because of the importance of collusion to trust and repu-
tation systems, and because they have been well-studied, we
use them here as an example to demonstrate our technique.

An area with obvious topical relationship to our work is
that of coalition formation and stability within the field of
multiagent systems. This work is often approached from a
game-theoretic perspective (e.g., (Osborne and Rubinstein
1994; Shehory and Kraus 1999)), exploring the conditions
under which coalitions form, algorithms for formation, and
requirements for a coalition to persist. While insight into
these issues might be useful in the detection of coalitions,
existing work is difficult to apply to our problem. For exam-
ple, such work often makes assumptions such as the capabil-
ities of agents being known to one another, the distribution

of payouts being known, and the value earned by a coalition
depending only on the actions of coalition members.

Work in multiagent plan recognition and behavior recog-
nition (e.g., (Tambe 1996; Sukthankar and Sycara 2006;
2007)) considers scenarios where multiple agents are ob-
served attempting to execute a joint plan. The goal is to
infer the plan being executed from the observations. In such
cases, teams may break into subteams to perform tasks; re-
lated to our work, these proposals may also attempt to iden-
tify membership of subteams. While sharing important con-
cerns with our work, these proposals deal with fundamen-
tally different scenarios. In particular, this work assumes
a known plan library: pattern matching is used to identify
plans (and team assignments). In contrast, we assume no
knowledge of the plans in use.

The research most similar to ours appears to have come
in the field of collaborative filtering. Collaborative filter-
ing systems aid users in making selections, by making rec-
ommendations based on the opinions of others with similar
tastes. Such systems are commonly encountered on the in-
ternet today, recommending books, music, movies, etc.

Recent research has targeted the problem of shilling—the
creation of false user profiles/accounts containing ratings in-
tended to manipulate the results of the recommendation al-
gorithms (e.g., (Burke et al. 2006; Mehta and Nejdl 2009)).
Two general types of attacks are noted: push attacks, in-
tended to increase the recommendations of an item, and nuke
attacks, intended to decrease recommendations. While these
correspond roughly to ballot-stuffing and bad-mouthing, re-
spectively, there are key differences. In a reputation system,
an agent might select or weight ratings based on its relation-
ships with the reviewers, the past accuracy of the reviewers,
etc. In contrast, in a collaborative filtering system the rec-
ommendations are based on the reviews of those with similar
tastes to the user (i.e., those having rendered similar opin-
ions). Accordingly, the attack strategy is different for col-
laborative filtering: an attacker seeks to build shill profiles
that will be as similar to (honest) users as possible, so as
to strongly impact their recommendations (Mehta and Ne-
jdl 2009). Because of this, leading approaches to detecting
shills focus on the extreme consistency of the shill profiles.

A focus of social network analysis has been on discover-
ing communities and groups within larger networks (e.g.,
(Girvan and Newman 2002; Newman and Girvan 2004)).
Such work often uses properties such as frequency of in-
teraction and degree of connectedness in order to identify
groups of users that are related. Unfortunately, such work
does not appear to be directly applicable to our problem.
For example, consider a ballot-stuffing attack. Members of
the coalitions may use a small number of fake positive re-
views to inflate each other’s reputations; this reputation may
be used to earn a large number of profitable sales from out-
siders. In this case, coalition members may be more con-
nected, have a greater number of interactions, etc., with out-
siders than with coalition partners.

Method
As noted, we are concerned with scenarios where no plan
library is available. Without the ability to match actions

42



against known patterns, we must rely on fundamental prop-
erties of the observable actions themselves. Typically, a self-
interested agent will be part of a coalition because it expects
some net benefit from doing so. Because benefit seems to be
fundamental to the existence of coalitions, we use it as the
basis of our technique. Specifically, we look at the ‘flow’
of benefit between agents: actions of one agent that benefit
another, and/or transfer of benefit from one to another.

Not all coalition members will realize observable benefit.
For example, a plan may not work out as expected for every
member. More to the point, it may be the case that most or
all coalition members benefit, but that not all of the benefit
flows are observable—some benefit may be transferred pri-
vately amongst members. In the situations with which we
are concerned, however, coalitions seek to gain net benefit
from or relative to other participants in the system (e.g., earn
additional profits, gain extra points, etc.), and improving the
net position of the coalition requires taking observable ac-
tions (e.g., making sales, attacking enemies, etc.). In such
scenarios, many forms of benefit flowing from one agent to
another may be observable. The actions that constitute ben-
efit are specific to a scenario, and domain expertise is likely
required to identify them.

Within a dynamic environment, coalition members may
help other members; they may also harm them (e.g., by ac-
cident, or to mask their relationship). Similarly, coalition
members may harm outsiders, but they may also benefit
them (e.g., by making a purchase from them.) We might
expect, however, that coalition members are more likely to
help one another than to help outsiders, and/or more likely to
harm outsiders than to harm one another. The key insight is
that because coalition members favor the same set of agents
(each other), there is likely similarity in terms of the agents
they benefit, and harm.

Our technique, then is a two step process. First, we ex-
ploit this similarity by using clustering to identify candidate
coalitions. Then, we use a statistical approach to character-
ize these clusters, to recognize actual coalitions.

Clustering in Benefit Space
We define the benefit space as a high-dimensional space re-
flecting the degree of benefit rendered to each agent in the
system. Specifically, given N total entities in the system,
the benefit space B is a space R

N , where the value in each
dimension βi represents an amount of net benefit (i.e., total
benefit minus total harm) to entity i. Positive values rep-
resent positive benefit, while negative values represent net
harm. It is clear from this definition that benefit must be
measurable in some terms; this may be as simple, however,
as counting positive actions and negative actions.1

1In a particular scenario, it is possible that there are multiple,
distinct aspects of benefit/harm that can’t easily be composed into a
single measure. For example, in a battlefield/game scenario, shoot-
ing at an agent might be an act of harm, while healing an agent
would be of benefit. Combining these two into a single meaning-
ful measure of ‘net benefit’ might be difficult. In such a case, each
such measure would be a separate dimension, meaning multiple di-
mensions for each agent. In this paper, however, a single measure
was used.

Each entity maps to a point in the benefit space, accord-
ing to the amount of (observable) net benefit it has rendered
to each entity in the system. Thus, a given agent a can be
represented by the vector:

b(a) ≡ (β1(a), β2(a), ...βN (a)) (1)

Members of a coalition are likely to be similar, in terms
of the sets of agents that they benefit, and the sets that they
harm. Thus, we would expect them to be close in this benefit
space (even if they don’t interact directly at all). Here, we
have used a simple Euclidian distance as our dissimilarity
measure, where the distance between a and b is:

da,b =
√

(β1(b)− β1(a))2 + · · ·+ (βN (b)− βN (a))2

(2)
With this, a standard clustering algorithm is applied to

find sets of agents that are similar in benefit space. Here,
we have used simple k-means clustering. This results in
a partitioning of the population P into a set of clusters
{C1, C2, ..., Cn}. As noted above, in a dynamic environ-
ment, the interactions between any pair of agents is unpre-
dictable (e.g., coalition partners may harm one another); this
results in noise. Our results (presented later in the paper)
show, however, that across all dimensions, sufficient signal
can be found to isolate coalitions.

Characterizing Clusters
While we would expect members of coalition to be similar in
benefit space, similarity does not necessarily imply that a set
of agents is a coalition. Considering a marketplace scenario,
for example, buyers who favor a particular set of sellers may
be close in benefit space, but may not be colluding—instead,
they may simply share similar tastes, or have found the same
set of reliable sellers. Moreover, a clustering algorithm will
provide clusters as output, whether or not a coalition was
actually present. Thus, we consider the clusters found to
be candidate coalitions; in our second step, candidates are
characterized to detect coalitions.

Our technique to identify coalitions is again based on the
notion that coalition members are more likely to benefit one
another than to benefit outsiders (or more likely to harm out-
siders than each other). From this principle, one approach
might be to compare the amount of pairwise net benefit flow-
ing from agent to agent within a cluster, to the amount flow-
ing from agents inside the cluster to agents outside the clus-
ter. One might expect that if a cluster contains a coalition,
the benefit flowing within the cluster (to members) would be
greater than that flowing out of the cluster (to outsiders).

We expect that this approach might work for many do-
mains. In the trust and reputation marketplace scenario used
in out experiments, however, it can be misleading. Consider
a group of agents S (who both buy and sell) who are not in a
coalition, but rather are just excellent sellers. Because they
are good sellers, they earn strong reputations, which in turn
makes them more popular. Because they are popular, the
agents in S are often selected by buyers, including the other
agents in S. Because the agents in S often buy from oth-
ers in S (i.e., they are benefiting the same agents), they may
wind up in the same cluster together. Because the agents
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in S buy from one another in preference to sellers outside
S, the benefit flow within the cluster containing S would be
greater than the flow out of S. According to the policy out-
lined above, S may be erroneously be viewed as a coalition.

Instead, we take an approach that is related, but does not
suffer from this problem. We would expect a coalition of
agents to benefit each other more than outsiders would favor
them. Consider, then, a coalition T . We would expect the
benefit flowing from members of T to other members in T ,
to be greater than the flow of benefit from non-members into
T . (Note the contrast with S: agents in S favor one another
because of high reputation, but agents outside S also favor
them for the same reason.)

We apply this to characterize candidate coalitions. First,
we compute the benefit flowing from agents in a candidate
cluster C, to other agents within C. Let m be the number of
agents in C. In our representation, benefit is directed (i.e.,
βa(b) might not equal βb(a)), so there are m2 ‘relationships’
between agents in C. The average (per relationship) benefit
within C, then, is

β̄C =

∑
i∈C

∑
j∈C βj(i)

m2
(3)

To know whether the computed value is abnormally high, we
need a benchmark to which to compare it. For this, we take
random samples of agents (drawn from the entire population
P , including agents both within and outside of C) of size m
(the same size as C). For each sample D, we compute the
benefit flowing from the agents in D, to agents in C:

β̄D =

∑
i∈D

∑
j∈C βj(i)

m2
(4)

Performing this computation for a large number of samples
(here, we use 100), we estimate the mean and standard de-
viation for the amount of benefit flowing from any random
selection of agents to members of C.

With this information, we can estimate the probability of
obtaining a measure as high as β̄C by chance, using the nor-
mal distribution. If this probability is too low, we conclude
that members of C are benefitting each other far more than
outsiders are, and that C thus contains a coalition.2

The threshold probability below which clusters are con-
sidered to contain coalitions (α) is a parameter: lower values
reduce the risk of false positives, while increasing the risk of
false negatives. In our tests, we used α = 0.001.

When a cluster has been identified as containing a coali-
tion, we label all agents in that cluster as coalition members.

Experimental Scenario
The TREET testbed (Kerr and Cohen 2010a) was used to
validate our technique. TREET provides a rich, flexible sim-
ulated marketplace environment for experimentation with

2We only apply this technique to clusters no larger than half the
size of the population. Clusters larger than this are ignored. There
are two key reasons for this. First, drawing repeated random sam-
ples of a size approaching the size of the population is problematic.
Second, coalitions consisting of the majority of the members in a
population are likely to be poorly-kept secrets, and need no special
detection methods.

trust and reputation technologies; the reader is referred to
that paper for details. Agents within TREET are buyers and
sellers of products; while user accounts can be observed,
the owners of the accounts (and their communications with
other agents) are hidden, allowing experimentation with col-
lusion. In TREET, each agent is assigned a set of products
that they can produce. Each turn, each agent is assigned a
random set of products that they need to purchase, requiring
buyers to interact with a variety of sellers.

In our simulations, the marketplace was populated with
honest agents who make use of the Beta Reputation System
(Jøsang and Ismail 2002) in order to find trustworthy sell-
ers and avoid unreliable ones. After each sale, the buying
agent rates the seller’s trustworthiness. We inserted into this
population, coalitions of various sizes making use of either
bad-mouthing or ballot-stuffing to improve their competitive
position. (The coalition agents were otherwise honest, ful-
filling all sales diligently.) The total population size in each
run was 400 agents. At most, one coalition was present in
any given trial.

The simulator provides us with labelled data: each agent
is known to be either part of a coalition, or not. We remove
these class labels before applying our technique. Afterward,
we compute the accuracy of our technique by comparing our
output to the actual classes of the agents.

Results
In the first set of tests, coalition members were engaged in
bad-mouthing. Agents did not make additional purchases
in order to bad-mouth competitors, however; instead, coali-
tion members bought the products that they actual needed,
but if they purchased from a competitor, they gave a nega-
tive review with probability 0.5. (Agents do not bad-mouth
on every transaction, to avoid being obviously engaged in
the tactic.) When the same product was available from both
coalition members and non-members, members had no pref-
erence to buy from one or the other.

In our environment, a number of measures of benefit and
harm can be identified, e.g., number of purchases, dollar
value of purchase, number of positive reviews, average re-
view score, etc. Here, we use only one of the available mea-
sures: the net sum of the review values given, weighted by
the dollar value of the transaction. This captures both bene-
fit (positive reviews) and harm (negative reviews), as well as
the importance of transactions.

A variety of coalition sizes were tested, as reflected in the
figures. For each coalition size, 5 trials were run; the figures
reported reflect the aggregate results across trials. (There
was one exception: to be very confident that the technique
handles the case where there are no coalitions present, 35
trials were run with zero coalition members.)

Figure 1 depicts the clustering performance when coali-
tions engaged in bad-mouthing. Here, we are not necessarily
concerned if coalition members are placed in a single clus-
ter, or split amongst multiple clusters. (The same holds for
non-members.) Rather, our primary concern is that coali-
tion members and non-members are partitioned into sepa-
rate clusters, so that each cluster can be characterized and
labelled. Thus, we use purity, and the true class of each
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Figure 1: Clustering performance against bad-mouthing.

agent (i.e., the real identity as either coalition member or
non-member) to evaluate clustering. Briefly, to calculate the
purity of a cluster, we determine which class has the highest
number of members in the cluster, then compute the portion
of the cluster represented by that class. A purity score of 1.0
indicates that a cluster consists entirely of a single class.

In Figure 1, purity values diverge little from 100%, but
this can be deceptive—trivially placing every agent into a
single cluster results in a high purity for small coalitions.
(E.g., for 5 colluders and 395 others in one cluster, purity
= 395/400 = 0.9875.) In any given trial, we ideally want
perfect separation (i.e., purity of 1.0). Thus, for clarity, Fig-
ure 1 also shows the percentage (of five trials run for each
coalition size) that resulted in perfect separation.
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Figure 2: Detection performance against bad-mouthing.

Rather than giving overall measures of detection accu-
racy (which can be misleadingly high, for the same reason
as purity), Figure 2 shows both the proportion of individ-
ual colluders that were accurately identified (‘Avg. Coali-
tion Acc.’), as well as the proportion of non-colluders that
were wrongly labelled as colluders (‘Avg. False Positives’).
Several points should be noted. First, overall detection of
coalition members was quite strong, except where coalition
sizes were small. In fact, the characterization component
of our algorithm was extremely accurate—failures to detect
collusions were entirely due to failures of the clustering al-
gorithm in partitioning coalition members.3 Second, the al-

3The attentive reader may notice that detection accuracy aver-
ages all fall on multiples of 20%. This is because, as noted, a clus-
tering failure results in none of the colluders being detected on one
of the five trials.

gorithm is extremely resistant to false-positives: in no case
was a non-member identified as a coalition member. This
is particularly noteworthy where the number of colluders is
zero; the technique successfully copes with the case where
no coalition is present.

One might wonder whether, because all sellers were act-
ing honestly, if bad-mouthing agents stand out because they
were the only ones giving negative reviews. This is not the
case. First, the benefit measure used did not reflect nega-
tive reviews, only total net benefit. More importantly, we
also investigated the case where only ballot-stuffing is used,
and thus no negative reviews are given. (Here, in addition
to their normal purchases, coalition members engage in an
extra 25% ballot-stuffing transactions.) The results, depicted
in Figures 3 and 4, show similarly strong performance. One
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Figure 3: Clustering performance against ballot-stuffing.
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Figure 4: Detection performance against ballot-stuffing.

noteworthy difference from the bad-mouthing case is the
presence of a small number of false positives in two trials.
In these cases, the clustering algorithm constructed a cluster
containing both the coalition members, as well as a num-
ber of outsiders. Because of the presence of the coalition
members, on average the cluster members benefited each
other substantially—the cluster was identified as ‘contain-
ing a coalition’. As such, the entire cluster was labelled as
a coalition—the non-members in the cluster were wrongly
identified. This situation might be avoided by tuning the α
parameter.

Discussion and Future Work
It is worth noting that our algorithm detects groups of agents
that are providing more net benefit to each other than other
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members provide. We might call this a de facto coalition. It
may arise because the group is an actual coalition, intention-
ally acting in concert. Such a situation might possibly arise,
however, due to other circumstances: for example, a group
of agents may have closely aligned needs and capabilities,
and favor each other for this reason. We make no attempt to
distinguish between these cases, and the importance of this
issue is likely to be scenario-specific. We do note, however,
the close correspondence between actual coalitions and de-
tected coalitions in our results.

Conversely, an actual coalition (intentionally coordinat-
ing their efforts) might be ineffective—perhaps they act too
little to benefit one another, or they have problems of coor-
dination. Such a group would not be detected as a coalition.
Is this a problem? The answer may depend on the scenario.
This may be an important issue, given our results. Detection
accuracy was poor for small coalitions; it may be that the to-
tal activity of these coalitions (and the benefit derived from
the members) was too little to be detected.

In this first proposal for detecting coalitions, we have
achieved a noteworthy degree of success, despite employ-
ing simple tools. For example, as noted early in the paper,
identifying appropriate measures of benefit for a given sce-
nario requires domain knowledge, and is non-trivial. We
used only one of many measures available in our scenario;
we intend to explore a variety of such measures. The use
of additional features may, for example, aid in the detection
of small coalitions. Similarly, we used Euclidean distance
for similarity. It may be the case that the nature of interac-
tions is more important than the quantity of interactions. To
investigate this, we intend to explore the use of polar coor-
dinates, cosine similarity, etc. Further, we used only simple
k-means clustering. Given the central importance of clus-
tering accuracy to our technique, we intend to investigate
the usefulness of more sophisticated algorithms. This may
be especially important when we consider cases where there
may be many coalitions in the environment.

Beyond these potential improvements, we intend to ex-
plore the enhancement of this technique to handle a wider
range of situations: overlapping coalitions, changing mem-
bership, etc. We also intend to apply this technique to other
domains, such as those noted in the introduction.

Conclusion
In this paper, we have presented a technique that allows
coalitions to be detected and their members identified. Be-
cause it is based on the concept of benefit rather than on
domain-specific features, and because it requires no knowl-
edge of the plans that may be used by coalitions, we believe
it to be applicable to a wide variety of domains. The effec-
tiveness of the technique was demonstrated using trust and
reputation systems, an area where coalitions are especially
problematic. The method was shown to provide strong de-
tection performance, while at the same time being resistant
to false positives, especially important where one might take
corrective or punitive actions against suspected colluders.

We believe that this paper represents an important step to-
wards addressing the challenges posed by coalitions, partic-
ularly for domains where such cooperation is problematic.
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