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Abstract 
We propose a mechanism to learn communicative action 
structure to analyze adversarial reasoning patterns in 
customer complaints. An efficient way to assist customers 
and companies is to reuse previous experience with similar 
agents. A formal representation of customer complaints and 
a machine learning technique for handling scenarios of 
interaction between conflicting human agents are proposed.     
It is shown that analyzing the structure of communicative 
actions without context information is frequently sufficient 
to advise on complaint resolution strategies. Therefore, 
being domain-independent, the proposed machine learning 
technique is a good complement to a wide range of 
customer response management applications where formal 
treatment of inter-human interactions is required. 

Introduction   

Automating customer complaints processing is an 
important area of knowledge management. Retailers and 
service providers may profit from software services for 
customer complaints, as they allow to handle complaints 
faster, providing the possibility of feedback analysis and 
data mining capabilities on the basis of a complaint 
database. On the other hand, software tools for automatic 
complaint processing like ComplaintEngine (Galitsky 
2007) allow reducing costs in complaint processing, 
improving communication with demanding customers and 
impressing the customer audience with complaint 
intelligence technologies. In such a setting, automated 
decision-support agents are important, as they can be 
integrated as a part of an automated infrastructure for 
handling complaints, interacting with customers as a part 
of the overall online business. Recent research (Philips-
Wren 2005)  has shown that being harassed by a 
adversarial environment, decision makers in decision 
support technologies for real-time and uncertain decision 
problems (as those related to customer complaints 
processing) often ignore crucial information, use 
inefficient strategies, and generate fewer alternatives. 
Examples of such problems are such as medical 
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emergencies, traffic flow, military applications and 
customer relation management. These decision problems 
often require up-to-the-minute information, dynamic 
response and qualitative conflict resolution, primarily 
reasoning about mental states and communicative actions 
of involved parties. 
   In this paper we present the representation machinery 
needed for modeling conflict scenarios associated with 
customer complaints and propose a machine learning 
approach for classifying scenarios of human-agent 
conflicts in customer complaint situations. Scenarios will 
be represented as labeled directed acyclic graphs, where 
arcs denote the flow of interaction between two parties in a 
conflict. Given a scenario S, we use Nearest Neighbors 
(Mitchell 1997) as a technique to relate that particular 
scenario to the class of valid or invalid argumentation 
scenarios, on the basis of finding common subscenarios 
(subgraphs) by means of similarity matching. As we will 
see, this technique can be implemented in a stand-alone 
mode or used in combination with deductive reasoning or 
simulation. 

     Formalizing Complaint Scenarios  

When modeling scenarios of inter-human conflict it is 
worth distinguishing communicative/physical states and 
actions. The former include knowing, pretending (states) 
and informing or asking (actions); the latter are related, for 
example, to location, energy and account balance 
(physical states), or to moving and withdrawing (physical 
actions). It has been shown that an adequate description of 
the world can be performed on the basis of communicative 
entities and merging all other physical action into a 
constant predicate for an arbitrary physical action and its 
resultant physical state (Galitsky 2003). In our approach 
we characterize a sequence [s1,s2,…sk] of communicative 
states for an scenario via the set of mental actions that 
would unambiguously lead to these mental states. Hence 
we approximate an inter-human interaction scenario as a 
sequence [a1, …,an] of communicative actions, ordered in 
time, with a defeat relation between some of them. 
Scenarios are simplified to allow for effective matching 
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among them by means of graphs. In
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to capture similarities between scenarios. 
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edge) denotes a sequence of two actions.  
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opponent reacts with denial to his disagreement. In other 
words, the complainant disagrees with what has already 
been explained but at the same time “defeats” what has 
granted as confirmed, which is a suspicious argumentation 
pattern.  
    Our aim is to classify a new complaint scenario without 
background knowledge, on the basis of a dataset of 
scenarios for each class. We intend to automate the above 
analysis given the formal representation of the graph. Such 
graph was obtained from a user-company interaction in the 
real world, filled in by the user via a special form where 
communicative actions and argumentation links are 
specified, as we will see later. Conflict scenarios will be 
formalized on the basis of user-input text, so that there can 
be multiple communicative actions per step (for example I 
disagreed… and suggested…). Such patterns are very 
common in our conflict scenarios: the former 
communicative action describes how an agent receives a 
message (accept, agree, disagree, reject, etc.) from another 
party, and the latter one describes the attitude of this agent 
to that communicative action, initiating a request (suggest, 
explain, etc.) or reacting to the other party’s action. 
Frequently, such actions are assumed but not mentioned 
explicitly, and they can be deduced from the context. We 
will approximate each communication step using four 
semantic components, namely an agent identifier 
(identifies whether the communicative action is performed 
by the proponent or the opponent in the dialogue), a 
communicative action, the subject of communicative 
action (which issue is this communicative action referring 
to) and the cause for subject (reason for referring to the 
subject). 
 

 
Fig. 3:  Interactive Complaint Form (screenshot). A single 
interaction step is shown enlarged at the top 

Next we will briefly outline the functionality of Complaint 
Engine (Galitsky 2007, Galitsky et al 2010), the customer 
complaint platform used for testing the proposed approach. 
The user interface to specify a complaint scenario is shown 
in Fig. 3. A complainant (e.g., a customer) selects his 
communicative actions (on the left) and communicative 
actions of his opponent (e.g., a company, on the right) 
respectively. Communicative actions are selected from a 
list of twenty or more, depending on the industry sector of 
the complaint. The parameters of communicative actions 
are specified as text in the Interactive Form (even though 
they are not present in the formal graph-based scenario 
representation). When filling in a complaint form, the user 
specifies implicitly a complaint scenario, modeled as a 
graph as discussed before. Communicative actions selected 
by the user in the list boxes constitute the vertices of such a 
graph, whereas check boxes on the right of the list boxes 
are used to specify whether the incoming arc is thick 
(checked) or thin (unchecked). Check boxes linked with a 
vertical line are used to specify argumentation links 
between the respective events. After performing the 
justification of complaint validity, ComplaintEngine sets 
the list box for complaint status at “unjustified” 
(”justified”, resp.), indicating whether the complaint 
proceeds or not. 
   ComplaintEngine provides the explanation of this 
decision by highlighting the cases which are similar to the 
one to be classified, and which are different from it. 
Moreover, ComplaintEngine indicates the communicative 
actions (steps) that are common for it and other complaints 
to further back up its decision. ComplaintEngine is useful 
for companies as it can store complaints, analyze them, 
determine their validity and advise on a general strategy 

for complaint resolution, using the graph 
representation.  
It must be remarked that a complainant has the 
choice to use the above form or to input 
complaint as a text, and a specialized linguistic 
tool processes that text and fills in the form for 
him/her. However, using the form as a 
“template” encourages complainants to enforce a 
logical structure on their complaints. Moreover, 
in contrast to communicative actions, it is too 
hard for current automated text-processing 
technology to reveal defeat relationships from 
text. In that respect the template proves to be 
particularly useful, as argumentation links can 
only be defined via the form using arrows. After 
a complaint is partially or fully specified, the 
user evaluates its consistency. ComplaintEngine 
indicates whether the current complaint is 

consistent or not (according to its communicative 
component), and it may issue a warning or advice 
concerning improvement of the logical structure of this 
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complaint. When the complainant is satisfied with the 
response of ComplaintEngine, he/she can submit the 
completed form. 

Learning semantics of communicative actions 
in adversarial environment 

 
Previous implementations of ComplaintEngine were 
restricted to analysis of scenarios as sequence of 
communicative actions without a graph representation 
(Galitsky et al 2011). Our current approach makes the 
treatment of sequences of communicative actions more 
accurate and augments it with attack relations between the 
subjects of these communicative actions. Therefore, a 
special machine learning technique to operate with such 
representations was required, and a formal framework for 
comparison (finding similarities) between communicative 
actions is to be developed. Analysis of conflict scenarios is 
based on previous complaints which have been analyzed 
by experts, and characterized as valid or invalid. In order to 
assess the status of a new complaint, we will analyze the 
structure of the underlying communicative actions and 
argumentation patterns to check if they are similar to some 
previous ones assigned by an expert as valid. 

Fig. 4: Communicative actions in Sfreq and associated 
attribute values. 
 
   It must be remarked that, in contrast to logical 
frameworks for defeasible argumentation (Chesnevar 
2000), we do not require a mathematically formalized 
criterion on why one natural language expression defeats 
another. It is up to the user who specifies a negotiation 
history that one argument of himself attacks another one of 

his opponent. For example, the statement “I made a 
deposit well in advance” attacks the statement “it usually 
takes a day to process the deposit” in the case when access 
to this deposit fails, and it is up to a complainant to specify 
the respective attack relation in accordance to her belief.  
  The theory of speech acts (Searle, 1969, Austin 1962) is 
one of the most promising approach to categorizing 
communicative actions in terms of their roles. Following 
(Bach and Harnish 1979), we consider four categories of 
illocutionary speech acts with major representatives: 
stating, requesting, promising and apologizing. Each 
speech act is related to a single category only in the 
framework of the speech act theory; however for our 
purpose each speech act extracted from text as a lexical 
unit may belong to multiple categories (see Fig. 4).  A 
number of approaches have attempted to discover and 
categorize how the attitudes and speech acts of participants 
in a dialogue are related to each other. Applying machine 
learning to the attitudes and speech acts, we are primarily 
concerned with how these approaches can provide a 
unified and robust framework to find a similarity between 
the speech acts in the context of understanding customer 
complaints. To implement such a machine learning 
approach we had first to identify a set Sfreq of those 
communicative actions which are most frequently used for 

representing conflict (Fig. 5), on the basis 
of a structured database of previous 
complaints. Furthermore, to capture the 
similarity between communicative 
actions, we introduced five different 
attributes, each of which reflects a 
particular semantic parameter for 
communicative activity: 
 
• Positive/ negative attitude expresses 
whether a communicative action is a 
cooperative (friendly, helpful) move (1), 
uncooperative (unfriendly, unhelpful), 
move (-1), neither or both (hard to tell, 
0). 
• Request / respond mode specifies 
whether a communicative action is 
expected to be followed by a reaction (1), 
constitutes a response (follows) a 
previous request, neither or both (hard to 

tell, 0). 
• Info supply / no info supply tells if a communicative 

action brings in an additional data about the conflict 
(1), does not bring any information (-1), 0; does not 
occur here. 

• High / low confidence specifies the confidence of the 
preceding communicative state so that a particular 
communicative action is chosen. Thus we have  high 
knowledge/confidence(1), lack of 
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knowledge/confidence(-1), neither or b
(0). 

• Intense / relaxed mode tells about 
emotional load, high emotional load
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(two thick arcs) in comparison with I1, I2, I3, I4. Moreover, 
we have that U*V4  ⊆ U*I5 (this inclusion is highlighted by 
the ovals around the steps), so that Condition 2 is satisfied. 
Therefore, U is an invalid complaint as having the highest 
similarity to invalid complaint I5. 

Evaluation of complaint classification 

 
We performed the comparative analysis of relating 
scenarios to a class taking into account (a) communicative 
actions only; (b) argument structure only and (c) both 
communicative actions and argument structure. Such an 
analysis sheds a light on the possibility to recognize a 
scenario without background knowledge, which is a typical 
situation in real-world complaint analysis. Comparing the 
contributions of communicative actions and argumentation 
to relating a scenario to a class, we explored the high-level 
roles of these components and the peculiarities of their 
inter-connection. Revealed rules for typical valid and 
typical invalid complaints in a given domain would help to 
reveal corresponding behavior patterns, which are essential 
for complaint handling personnel. 
   We conducted a two-level evaluation of communicative 
actions and argumentation patterns. On the first level, we 
considered a limited dataset of formalized real-world 
complaint scenarios and performed their classification. For 
each complaint scenario, we set its class to unknown and 
verified if it can be related to its class properly, building 
common subscenarios with the representatives of its class 
and foreign scenarios. On the second level, we evaluated 
the functionality of the currently available complaint 
processing system, augmented with argumentation 
analysis. Processing an extended set of complaints, we 
compare a recognition accuracy of the base system, (which 
takes into account communicative actions only) with that 
of the augmented system. 
   Our reduced dataset included 58 complaints which we 
selected as typical and sufficiently complex to be 
represented as a graph with at least six vertices (42 valid 
and 16 invalid complaints, 50% of each is a training set 
and 50% have to be classified). We obtained the following 
recognition accuracy for this dataset: 64% with 
communicative actions only, 43% with argumentation 
only, and 78% by combining communicative actions and 
argumentation. Hence argumentation improves the 
classification accuracy for this dataset by about 22%, and 
the stand-alone argumentation analysis delivers less than 
50% classification accuracy. We believe that the relation 
between the above percentages is an important outcome 
compared with these percentages as such being domain-
dependent. It is also worth mentioning that these 

recognition settings assume relating a scenario to a class 
and providing a background for the decisions.  
  Our second-level evaluation for our complaint database 
primarily originates from the data on financial sector, 
obtained from the website of publicly available textual 
complaints PlanetFeedback.com. For the subset of this 
dataset which includes the complaints with argumentation, 
the performance of ComplaintEngine was improved by 
16% to achieve the resultant recognition accuracy of 91%. 
However, for the overall dataset the improvement was 7% 
only. Nevertheless one may conclude that taking into 
account argumentation is important for accurate 
assessment of complaint validity. 
 

Related Work and Conclusions 

In this paper we have proposed a Nearest Neighbors-based 
approach to improve automated processing of customer 
complaints in the ComplaintEngine software platform. We 
have shown how communicative actions along with 
argumentation patterns can be successfully modelled in 
terms of graphs, capturing similarities among them to 
assess their validity. In earlier studies (Galitsky et al 2007, 
Galitsky et al 2011)  we approximated the meanings of 
communicative entities using their definitions via the basis 
of “want-know-believe”. However, building the concept 
lattice for communicative actions was found to be more 
suitable, particularly as a way to define a concept lattice 
for scenarios themselves.  
   To the best of our knowledge, there is no similar 
approach in targeting machine learning techniques for such 
domain as assessing the validity of customer complaints. A 
number of studies have shown how to enable multiagent 
systems with learning in a particular domain (e.g. 
information retrieval) and how to enable them with 
argumentation capabilities. In particular, machine learning 
frameworks for operating with rich conflict scenarios (as 
those involving inter-human interactions) have not been 
yet explored, although a number of case-based reasoning 
approaches have been suggested to treat the scenarios of 
interaction in the belief-desire-intention (BDI) agent model 
(Rao & Georgeff 19950, as shown in (Olivia et al 1999, 
Stone & Veloso 2000). However, in such approaches the 
description of agents’ attitudes is reduced to their beliefs, 
desires and intentions, without involving a richer language 
for communicative entities as proposed in our approach. In 
this paper we significantly extended the expressiveness of 
representation language for attitudes, using different 
communicative actions linked by a concept lattice. The 
suggested machinery can be applied to an arbitrary domain 
including inter-human conflicts, obviously characterized in 
natural language.  
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    Adversarial reasoning has been defined (Kott & 
McEneaney 2006) as a series of computational approaches 
to inferring and anticipating perceptions, intents and 
actions of opponents. The authors argue that adversarial 
reasoning goes beyond the boundaries of game theory and 
must also include such areas as cognitive modeling, control 
theory, AI planning and others. Authors also describe a 
battle planning system that focuses on brigade-level 
ground operations and involves adversarial reasoning.  
    According to (Pelta & Yager 2009), a possible action 
against an  adversary is to make decisions that are intended 
to confuse him, although proponent’s rewards can be 
diminished. It is assumed that making decisions in an 
uncertain environment is a hard task. However, this 
situation is of upmost interest 
in the case of adversarial reasoning, since it is beneficial to   
confuse the adversary in situations of repeated conflicting 
encounters. Using simulations, the use of dynamic vs. 
static decision strategies were analyzed and it turned out 
that the presence of an adversary may produce a decrease 
of, at least, 45% with respect to the theoretical best payoff. 
      As a final conclusion we can say that the preliminary 
evaluation of our model of adversarial argumentation 
attached to subjects of formalized communicative actions 
shows that it is an adequate technique to handle such 
complex objects as communicative actions of scenarios for 
multiagent interactions (both in terms of knowledge 
representation and reasoning). Evaluation experiments 
using our limited dataset, as well as the dataset of 
formalized real-world complaints showed a satisfactory 
performance, although the most promising results seem 
still to be ahead. 
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