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Abstract

Game theory has become an important tools for making re-
source allocations decision in security domains, including
critical infrastructure protection. Many of these games are
formulated as Stackelberg security games. We present new
analysis and algorithms for a class of Stackelberg security
games with identical, fully protective defender resources.
The first algorithm has worst-case complexity linear in the
number of possible targets, but works only for a restricted
case. The second algorithm can find and optimal resource
allocation for the general case in time O(n · log(n)).

Introduction

Security problems typically involve making strategic re-
source allocation decisions in order to prevent or mitigate
attacks. Game theory has been used to model decision-
making in a variety of security situations, including the pro-
tection of critical infrastructure from terrorist attacks (San-
dler and M. 2003; Bier 2007), computer network secu-
rity (Alpcan and Basar 2003; Nguyen and Basar 2009;
Srivastava et al. 2005), robot patrolling (Gatti 2008; Ag-
mon et al. 2009; Halvorson, Conitzer, and Parr 2009), and
scheduling (Roughgarden 2004). Recently, research on se-
curity games has been deployed to make real-world home-
land security decision, including the ARMOR system in use
at the LAX airport (Pita et al. 2008), the IRIS system used by
the Federal Air Marshals Service (Tsai et al. 2009), and the
GUARDS system developed for the Transportation Security
Administration (Pita et al. 2011).

A key research direction has been the development of
faster algorithms to scale to increasingly large and complex
instances of security games (Conitzer and Sandholm 2006;
Paruchuri et al. 2008; Kiekintveld et al. 2009; Jain et al.
2010). Faster algorithms that exploit the structure of se-
curity games have been key in enabling new applications
of these methods. We present new algorithms for one of
the most basic classes of security games: Stackelberg secu-
rity games with multiple, identical defender resources. This
class of games was described in (Kiekintveld et al. 2009),
which also gave a polynomial-time (O(n2)) algorithm for
computing Stackelberg equilibrium of these games.
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In this paper we present two new algorithms for Stack-
elberg security games with identical resources. The first
solves a special case in worst-case linear time (O(n)), and
the second solves the general case in O(n · log(n)). In ad-
dition to improving on the theoretical complexity of the best
known methods for this class of security games, our algo-
rithms are based on a detailed analysis of the structure of
the solutions for these games, which may lead to faster al-
gorithms or heuristics for more complex variants of security
games.

Security Game Model: General Case

We adopt the general model of security games described
in (Kiekintveld et al. 2009). A security game has two play-
ers, a defender, Θ, and an attacker, Ψ. There is a set of
n targets ti ∈ T that the attacker wishes to attack and the
defender wishes to protect. In our model, the attacker can
choose to attack exactly one target from this set. The de-
fender has a limited number of resources, m < n, that can
be deployed to protect the targets. We assume throughout
that these resources are identical, and that at most one re-
source can be used to protect each target.

If the attacker chooses to attack target ti, we call the
attack successful if the target is left uncovered by a de-
fender, and unsuccessful if the target is covered by a de-
fender. The defender’s payoff for an uncovered attack is
denoted Uu

Θ(t), and for a covered attack U c
Θ(t). Similarly,

Uu
Ψ(t) and U c

Ψ(t) denote the attacker’s payoffs in each case.
We will make the standard assumptions for security games
that Uu

Θ(t) < U c
Θ(t) and Uu

Ψ(t) > U c
Ψ(t) for all targets t.

In other words, the attacker receives a higher payoff for at-
tacking an undefended target than a defended one, and vice
versa for the defender. Note that this does not imply that the
games are zero-sum (or even strategically zero-sum).

The attacker’s set of pure strategies consist of attacking
each of the n targets. The defender’s set of pure strate-
gies comprise all possible ways to assign the m resources
to the n targets. However, we can conveniently summa-
rize the defender’s strategy by defining the coverage vec-
tor which gives the probability that there is a defender re-
source assigned to each individual target. Let us denote

these probabilities by ci, so that
n∑

i=1

ci = m. The attacker’s

expected utility for an attack on target ti can then be written
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as (1−ci)·Uu
Ψ(ti)+ci·U c

Ψ(ti), and similarly for the defender.
We denote these expected utilities by ΩΘ and ΩΨ for the de-
fender and attacker, respectively. These expected utilities
are a function of the strategies of both players. Because of
our assumptions, for each target ti, the defender’s expected
payoff decreases when the probability ci of defending this
target increases. We also assume that all defender resources
are identical and can be deployed to any target.

We model the game as a Stackelberg game (von Stackel-
berg 1934) in which the attacker can observe the defender’s
strategy (c1, . . . , cn) before planning an attack (modeling
the capability of attackers to use surveillance to learn secu-
rity policies). The standard solution concept for these games
is Strong Stackelberg Equilbrium (SSE) (Leitmann 1978;
Basar and Olsder 1995). In an SSE, the leader first selects
a mixed strategy, and then the follower chooses an optimal
pure strategy in response, breaking ties in favor of the leader.
This behavior can be induced by the leader selecting a strat-
egy arbitrarily close to the equilibrium that causes the the
follower to strictly prefer the desired strategy (von Stengel
and Zamir 2004), but in practice we compute the limit point
where ties are broken in favor of the leader.

More formally, let δΘ be a mixed strategy (i.e., coverage
vector) for the defender. The attacker’s strategy in a Stack-
elberg security game is a function that selects a strategy in
response to every possible leader strategy: FΨ : ΔΘ → ΔΨ,
where ΔΘ is the set of all possible defender strategies and
ΔΨ is the set of all possible attacker pure strategies. A pair
of strategies (δΘ, FΨ) form a Strong Stackelberg Equilib-
rium (SSE) if they satisfy the following:

1. The leader plays a best-response:
ΩΘ(δΘ, FΨ(δΘ)) ≥ ΩΘ(δ

′
Θ, FΨ(δ

′
Θ)) ∀ δ′Θ ∈ ΔΘ.

2. The follower play a best-response:
ΩΨ(δΘ, FΨ(δΘ)) ≥ ΩΨ(δΘ, δΨ) ∀ δΘ ∈ ΔΘ, δΨ ∈ ΔΨ.

3. The follower breaks ties optimally for the leader:
ΩΘ(δΘ, FΨ(δΘ)) ≥ ΩΘ(δΘ, δΨ) ∀ δΘ ∈ ΔΘ, δΨ ∈
Δ∗

Ψ(δΘ), where Δ∗
Ψ(δΘ) is the set of follower best-

responses, as above.

Our goal in this paper is to develop efficient algorithms
for computing SSE solutions to instances of Stackelberg se-
curity games.

Case of Fully Protective Resources:

Description and Analysis of the Problem

We begin by studying a practically and conceptually impor-
tant restricted case of the problem, and later generalize our
analysis to a broader class of Stackelberg security games.
For now, we will assume that the attacker’s payoff for at-
tacking a target that is protected is 0 (that is, U c

Ψ(t) = 0),
and that a single defender resources is ”fully protective” so
that it is never necessary to assign more than one resource to
a single target. We will also assume that no target is covered
100% of the time, or that there is a single defender resource.
We begin with a basic analysis that describes the structure
of the solution.

The analysis presented in (Kiekintveld et al. 2009)
showed that for any Stackelberg security game with iden-

tical, unconstrained resources that each cover a single tar-
get and a payoff structure such that Uu

Θ(t) < U c
Θ(t) and

Uu
Ψ(t) > U c

Ψ(t) for all targets t, we can find an SSE solution
without considering the defender’s payoffs. To do so, we
need to find a coverage vector that (1) minimizes the max-
imum expected payoff for the attacker and (2) maximizes
the number of targets that have the same maximum payoff
for the attacker. If we call the set of targets that are best re-
sponses for the attacker given some coverage vector C the
attack set, then condition 2 states that we are looking for the
largest possible attack set, given that we have already mini-
mized the attacker payoff for targets within this set. Recall
that in an SSE, that attacker will break ties in favor of the
defender, so the defender will receive the best possible pay-
off for any target in the attack set. Therefore, we do not
need to account for the defender’s payoffs directly; they are
maximized implicitly by minimizing the attacker’s payoffs
and maximizing the size of the attack set. We not that these
conditions are not sufficient for SSE in cases where the pay-
off structure described above does not hold, or if defender
resources have constraints or can cover more than one target
(e.g., in cases where resources can patrol multiple targets on
a tour).

We now proceed with a further analysis of the structure
of this problem that will lead to a linear-time algorithm for
computing an SSE for this class of games. The attacker
seeks to maximize the expected value of a successful attack:

argmax
i

(1− ci) · Uu
Ψ(ti), (1)

while the defender chooses a coverage vector to minimize
the attacker’s expected payoff. Let tio denote the optimal
target to attack, so we have for every target ti:

(1− cio) · Uu
Ψ(tio) ≥ (1− ci) · Uu

Ψ(ti). (2)

Now, assume that for some i this inequality is strict and that
ci > 0. In this case we could decrease ci and increase the
probability cj for all j such that

(1− cj) · Uu
Ψ(tj) = (1− cio) · Uu

Ψ(tio), (3)

thus decreasing the expected payoff of the attacker.
Therefore, for the minimizing coverage vector, all targets

can be divided into two groups:

• either the expected value for attacking the target is equal
to the optimal value,

• or the expected value is less than the optimal value and
the coverage probability assigned to the target is 0.

In other words, the optimal solution will have the property
that the attacker’s expected value for all targets with positive
coverage probability is equal to some constant q:

(1− ci) · Uu
Ψ(ti) = q. (4)

For any target ti with ci > 0 we can calculate the neces-
sary value of ci as:

ci = 1− q

Uu
Ψ(ti)

. (5)
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For all other targets Uu
Ψ(ti) < q, and therefore

1− q

Uu
Ψ(ti)

< 0. (6)

Summarizing: once we know q, we can find all the prob-
abilities ci by using the formula

ci = max

(
1− q

Uu
Ψ(ti)

, 0

)
. (7)

For each target ti, this formula requires a constant number
of computational steps. Therefore, after q is computed, we
can compute all the probabilities ci in time O(n).

We have shown that to find an optimal coverage vector
it is sufficient to find the constant q, which can be used to
directly compute the coverage probabilities for each target.

This constant can be found from the condition that
n∑

i=1

ci =

m, i.e., that
n∑

i=1

max

(
1− q

Uu
Ψ(ti)

, 0

)
= m. (8)

The left-hand side of this equality decreases as q increases.
So, if for some q, the resulting sum is smaller than m, this
means that the optimal value qo is smaller than q: qo < q;
similarly, if for some q, the resulting sum is larger than m,
this means that the optimal value qo is larger than q: qo > q.

The structure of the optimal covering vector can be clar-
ified if we sort the targets in order of descending attacker
payoffs for successful attacks, so that:

Uu
Ψ(t(1)) ≥ . . . ≥ Uu

Ψ(t(n−1)) ≥ Uu
Ψ(t(n)). (9)

We can also add Uu
Ψ(t(0))

def
= +∞ and Uu

Ψ(t(n+1))
def
= 0,

then

Uu
Ψ(t(0)) ≥ . . . ≥ Uu

Ψ(t(n)) ≥ Uu
Ψ(t(n+1)). (10)

The values Uu
Ψ(t(i)) divide the real line into intervals

[Uu
Ψ(t(i+1)), U

u
Ψ(t(i))], so the threshold constant q must

be in one of these intervals, i.e., between Uu
Ψ(t(k+1)) and

Uu
Ψ(t(k)) for some k. In this case, according to the above

formula for ci, all targets with a value greater than q (i.e.,
the targets t(1), t(2), . . . , t(k) in the above ordering) will be
protected with positive probability, and all targets with value
smaller than q (i.e., targets t(k+1), t(k+2), . . . ) are left unpro-
tected. Let k denote the index of last target that has positive
probability. Given the constraint that the coverage probabil-
ities add to m, we can write:

k∑
i=1

(
1− q

Uu
Ψ(t(i))

)
= m, (11)

hence

k −m = q ·
k∑

i=1

1

Uu
Ψ(t(i))

, (12)

and
q =

k −m
k∑

i=1

1

Uu
Ψ(t(i))

. (13)

So, instead of selecting q, we can simply select a threshold
value k. Once we have found this k, we can then compute
the threshold value q by using the above formula and then
use this q to find the optimal coverage probabilities.

For the optimal value k = ko, the corresponding value q
is located in the interval [Uu

Ψ(t(k+1)), U
u
Ψ(t(k))]. If for some

k, the value q computed by the above formula is smaller than
Uu
Ψ(t(k+1)), this means that we are trying to cover too few

targets, with the same q, we can cover more, so the optimal
value ko should be larger: k > ko.

Similarly, if for some k, the value q computed by the
above formula is larger than Uu

Ψ(t(k)), this means that we
are trying to cover too many targets, so the optimal value ko
should be smaller: ko < k.

Case of Fully Protective Resources:

Linear-Time Algorithm

We now present a linear-time algorithm for finding optimal
SSE solutions based on the analysis in the previous section.
The algorithm is based on using bisection to find the right
value of the constant q, which is then used to calculate the
coverage for each target.

The algorithm maintains three lists of targets:
• the list T c of the targets ti about which we are sure that in

the optimal coverage, these targets will be covered with a
positive probability ci > 0;

• the list Tu of the targets ti about which we are sure that
in the optimal coverage, these targets will not be covered
(ci = 0);

• the list T ? of the targets ti about which we have not yet
found out whether they will be covered or not in the opti-
mal coverage.

In the beginning, we set T c = Tu = ∅ and

T ? = {t1, t2, . . . , tn}. (14)

At each stage, we will also update the value

Sc =
∑
ti∈T c

1

Uu
Ψ(ti)

. (15)

In the beginning, since T c = ∅, we take Sc = 0.
At each iteration, we do the following:

• First, we compute the median d of the values Uu
Ψ(ti) cor-

responding to all “undecided” targets ti ∈ T ?.
• Then, by analyzing the elements of the undecided set T ?

one by one, we divide them into two subsets

T+ = {ti : Uu
Ψ(ti) ≥ d}, T− = {ti : Uu

Ψ(ti) < d}.
(16)

In the set T+, we find the target tk+ with the smallest
value of Uu

Ψ(ti); in the set T−, we find the target tk− with
the largest value of Uu

Ψ(ti).
• We then compute

S+ =
∑

ti∈T+

1

Uu
Ψ(ti)

, (17)

s+ = Sc + S+, and q =
k − d

s+
.
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• If q < Uu
Ψ(tk−), then, as we have argued in our analysis,

this means that we are trying to cover too few targets, so
definitely all the elements from the set T+ should be cov-
ered. Thus, we replace T c with T c ∪ T+, T ? with T−,
and Sc with s+.

• If q > Uu
Ψ(tk+), this means that we are trying to cover

too many targets, so definitely all the elements from the
set T− should not be covered. Thus, we replace Tu with
Tu ∪ T− and T ? with T+ (and keep Sc unchanged).

• Finally, if Uu
Ψ(tk−) ≤ q ≤ Uu

Ψ(tk+), this means that this
q is optimal.

Iterations continue until we find the optimal value q. Once
we get the optimal value q, we can then find the optimal

covering probabilities as ci = max

(
1− q

Uu
Ψ(ti)

, 0

)
.

Let us prove that this algorithm indeed takes linear time.
Indeed, at each iteration, we can compute the median in lin-
ear time (Cormen et al. 2009), and all other operations with
the set T ? also take time T linear in the number of elements
|T ?| of this set T ?: T ≤ C · |T ?| for some C. We start
with the set T ? of size n. On the next iteration, we have a
set of size n/2, then n/4, etc. Thus, the overall computation
time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e., linear
in n. This improves over the best known algorithm for this
problem, ORIGAMI, which runs in time O(n2).

General Case: Analysis of the Problem

We now return to the general case, relaxing our previous
assumption that the payoff for attacking a coverage target is
0. The general case can represent situations where a single
resource does not completely protect a target, or where there
is a benefit to the defender for capturing an attacker. In this
case, the attacker seeks to maximize the expected value of
an attack, taking into account both the payoff if the target is
defended and the payoff when it is not defended:

argmax
�

e�(c�), (18)

where

e�(c�)
def
= (1− c�) · Uu

Ψ(t�) + c� · U c
Ψ(t�), (19)

while the defender chooses a coverage vector to minimize
the attacker’s expected payoff

e(c) = max
�

e�(c�). (20)

In this case we must also consider that one or more targets
may be covered 100% of the time (ci = 1). For any given
coverage vector we can divide the targets into three groups:

• the first group is all targets ti for which ci = 1, so the
target is guarded with certainty;

• the second group is formed by targets tj for which 0 <
cj < 1; these targets are guarded part of the time;

• the third group is formed by targets tk for which ck = 0,
so they are never guarded.

Intuitively, this division makes sense:

• the most important targets must be guarded no matter
what,

• the least valuable targets will not be guarded at all if we
do not have enough resources, and

• intermediate targets will be guarded with some probabil-
ity.
Let us prove that this intuitive meaning is indeed true. To

be more precise, we prove that in this game, there exists a
minimizing vector (c1, . . . , cn) that has the following prop-
erties:
• The expected payoff ei(ci) of each target ti of the first

group (with ci = 1) is larger than or equal to the expected
payoff ej(cj) of each target tj of the second group (with
0 < cj < 1):

ei(ci) ≥ ej(cj). (21)

• The expected payoff ej(cj) of all target tj , tj′ from the
second group (with 0 < cj < 1) is the same:

ej(cj) ≥ ej′(cj′). (22)

• The expected payoff ej(cj) of each target tj from the sec-
ond group (with 0 < cj < 1) is larger than or equal to
the expected payoff of each target tk from the third group
(with ck = 0):

ej(cj) ≥ ek(ck). (23)

Intuitively, this makes sense: if the attacker’s expected pay-
off from a target ti that we guard absolutely is smaller than
the expected payoff from some other target tj that we guard
with a certain probability, then it makes sense to switch some
probability from target ti to target tj . In this case, the at-
tacker’s expected value for tj decreases; for ti it somewhat
increases, but since it was smaller than for the target tj , it re-
mains smaller, and the maximum of these values ei(ci) does
not increase.

To prove this result more formally, let us start with any
minimizing vector and show that by appropriate transforma-
tions it can be transformed into a minimizing vector with the
desired properties.

First, let us show how we can satisfy the first property.
For that, let us show that we can decrease the number of
targets ti for which ci = 1 and for which, for some j, we
have 0 < cj < 1 and ei(ci) < ej(cj). Indeed, out of all
such targets, let us pick a target for which the value ei(ci) is
the smallest, and let j be the corresponding target from the
second group. Then, for some Δ > 0, we replace ci with
c′i = ci − Δ and cj with c′j = cj + Δ. When Δ is small
enough, we have c′i > 0, c′j < 1, and ei(c

′
i) is still smaller

than all the values e�(c�) for which we had ei(ci) < e�(e�).
Let us keep all the other probabilities the same: e′� = c�

for all � 
= i, j. This replacement does not change the
sum

∑
ci, so while c′i ≥ 0 and c′j ≤ 1, we still get

a coverage vector. As we have mentioned, the expected
value of a target decreases with the increase in the prob-
ability that this target will be guarded. Thus, when Δ
increases, the value ei(ci − Δ) increases while the value
ej(cj +Δ) decreases. So, while ei(ci −Δ) ≤ ej(cj +Δ),
we have ei(ci) < ei(ci − Δ) ≤ ej(cj + Δ) < ej(cj).
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Thus, ei(c′i) < ej(cj) ≤ e(c) = max
�

c�(e�) and similarly

ej(c
′
i) < ej(cj) ≤ e(c) = max

�
c�(e�). For all other targets

�, we have c′� = c� hence e�(c
′
i) = e�(c�) ≤ e(c). Thus,

e(c′) = min

(
ei(c

′
i), ej(c

′
j), min

� �=i,j
e�(c

′
�))

)
≤ e(c). (24)

Since the original vector c is a minimizing vector, the value
e(c) is the smallest possible value, we conclude that c′ is
also a minimizing vector.

Let us show that in the new minimizing vector, the num-
ber of targets � from the first group for which the expected
value is smaller than for some target from the second group
is smaller than the same number computed based on the
original minimizing vector. Indeed, in the new minimizing
vector, the target ti is no longer from group one, it is now
from group two, so it is sufficient to check that this addition
of a new group-two target does not lead to the appearance
of a new “wrong-order” target of group one. Indeed, if for
some target ti′ from group one, we have ei′(ci′) < ei(c

′
i),

then we could not have ei(ci) < ei′(ci′) – because we se-
lected Δ so small that all such inequalities remain. Thus,
we have ei′(ci′) ≤ ei(ci) but in this case ei(ci) < ej(cj)
implies that ei′(ci′) < ej(cj) – and thus, ti′ was the wrong-
order target already in the original minimizing vector.

By applying this procedure again and again, we arrive at
the new minimizing vector for which the number of wrong-
order targets of group one is 0, i.e., in which the expected
payoff for every target from group one is larger than or equal
to the expected payoff for every target from group two.

Similarly, we can get a new minimizing vector in which
the expected payoff for every target from group two is larger
than or equal to the expected payoff of every target of group
three.

Let us now show that we can arrive at the minimizing vec-
tor for which for all targets from group two, the expected
payoff is the same. Let us show how an appropriate pro-
cedure can minimize the number of pairs (tj , tj′) of targets
from group two for which ej(cj) < ej′(cj′). Indeed, let us
sort all the corresponding values ej(cj) into an increasing
sequence, and let us take two neighboring values from this
sequence. Similarly to the above case, we replace cj with
c′j = cj −Δ and cj′ with c′j′ = cj′ +Δ. Both expected val-
ues ej(cj−Δ) and ej′(cj′+Δ) linearly depend on Δ, so, by
solving the corresponding linear equation, we can find Δ for
which ej(cj −Δ) = ej′(cj′ + Δ). If this value Δ satisfies
the conditions c′j = cj −Δ ≥ 0 and c′j′ = cj′ +Δ ≤ 1, we
get a new minimizing vector in which strict inequality holds
for one fewer pair of targets from group two. If this value
Δ does not satisfy one of these inequalities, this means that
for some smaller value Δ′ < Δ, we have either c′j = 0 or
c′j′ = 1. In both cases, the pairs stops being a wrong-order
pair of targets from group two. One can check that no other
wrong-order pairs appear after this transformation.

Let us now take the minimizing vector with the desired
properties. In particular, this means that for all targets from
group two, the attacker’s expected value is the same. Let us
denote this common value by q. Then, for every target tj

with 0 < cj < 1, we have

(1− cj) · Uu
Ψ(tj) + c� · U c

Ψ(tj) = q. (25)

So, we can calculate cj as

cj =
Uu
Ψ(tj)− q

Uu
Ψ(tj)− U c

Ψ(tj)
. (26)

For targets for which Uu
Ψ(tk) < q, we have ck = 0 – and the

above ratio is negative. For targets for which U c
Ψ(ti) > q,

we have ci = 1 – and the above ratio is larger than 1. Thus,
if the ratio is smaller than 0, we take ci = 0, and if the ratio
is larger than 1, we take ci = 1.

So, once we know q, for all targets ti, we can find all the
covering probabilities ci by using the following formula:

ci = min

(
max

(
Uu
Ψ(ti)− q

Uu
Ψ(ti)− U c

Ψ(ti)
, 0

)
, 1

)
. (27)

This generalizes the formula for the fully protective case by
introducing a more complicated calculation for the coverage
assigned to partially covered targets, and adding an addi-
tional constraint that the coverage probability cannot exceed
1 for any target. For each target ti, this formula still requires
only a constant number of computational steps. Therefore,
after q is computed, we can therefore compute all the prob-
abilities ci in time O(n).

So, to find the optimal covering vector, it is sufficient to
find the constant q. This constant can be found from the

condition that
n∑

i=1

ci = m, i.e., that

n∑
i=1

min

(
max

(
Uu
Ψ(ti)− q

Uu
Ψ(ti)− U c

Ψ(ti)
, 0

)
, 1

)
= m. (28)

The left-hand side of this equality decreases as q increases.
So:
• If for some q, the resulting sum is smaller than m, this

means that the optimal value qo is smaller than q: qo < q.
• Similarly, if for some q, the resulting sum is larger than

m, this means that the optimal value qo is larger than q:
qo > q.
Here, the target ti is covered with probability ci > 0 if

and only if q < Uu
Ψ(ti), and the target ti is covered with

probability ci = 1 if and only if U c
Ψ(ti) ≥ q. Thus, the

above formula for determining q can be rewritten as follows:

k(q) +
∑

i:Uc
Ψ
(ti)<q≤Uu

Ψ
(ti)

Uu
Ψ(ti)− q

Uu
Ψ(ti)− U c

Ψ(ti)
= m, (29)

where
k(q)

def
= #{i : U c

Ψ(ti) ≥ q}. (30)
Thus, if we know the place of q with respect to all the values
Uu
Ψ(ti) and U c

Ψ(ti), we can determine q by explicitly solving
the above linear equation.

If we sort all 2n values Uu
Ψ(ti) and U c

Ψ(ti) into a decreas-
ing sequence

z0 = +∞ ≥ z1 ≥ z2 ≥ . . . ≥ z2n−1 ≥ z2n ≥ z2n+1 = 0,
(31)
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we thus subdivide the real line into 2n+ 1 zones [zk+1, zk],
within each of which the relation between q and the values
Uu
Ψ(ti) and U c

Ψ(ti) is fixed. Thus, within each zone, we
can find the corresponding q and check whether this value is
indeed within the corresponding zone. As a result, in order
to find q, it is sufficient to find the corresponding value k.

Since the order is decreasing, the larger k, the smaller q,
and the more targets we cover. The selection of the zone
means that we select which targets we cover fully, and which
targets we cover with a positive probability. Similar to the
case of fully protective resources:

• If based on this selection, we need more than m resources
– i.e., if the value q obtained from solving the above linear
equation is smaller than all the values from this zone – this
means that we are trying to cover too many targets, so we
need to decrease k.

• Similarly, if it turns out that based on this selection, we
need fewer than m resources – i.e., that the value q ob-
tained from solving the above linear equation is larger
than all the values from this zone – this means that we
are trying to cover too few targets, so we can increase k.

Thus, we can use bisection to find the appropriate zone, and
we arrive at the following algorithm.

General Case: O(n · log(n)) Algorithm

First, we sort all 2n values Uu
Ψ(ti) and U c

Ψ(ti) into a de-
creasing sequence:

z1 ≥ z2 ≥ . . . ≥ z2n−1 ≥ z2n. (32)

We then take z0 = +∞ and x2n+1 = 0, so that we get:

z0 ≥ z1 ≥ z2 ≥ . . . ≥ z2n−1 ≥ z2n ≥ z2n+1. (33)

Then, we use bisection to find the value k for which zk ≥
q ≥ zk+1. At each stage of this bisection procedure, we keep
two values � and u such that z� ≥ q ≥ zu. In the beginning,
we have � = 0 and u = 2n+ 1. At each iteration, we do the
following:

• First, we compute the midpoint d = (�+ u)/2.

• Then, under the assumption that q ∈ [zd+1, zd], we com-
pute

kd = #{i : U c
Ψ(ti) ≥ zd+1}, (34)

then d0 = d − kd, and find q from the resulting linear
equation

∑
i:Uc

Ψ
(ti)≤zd≤zd+1≤Uu

Ψ
(ti)

Uu
Ψ(ti)− q

Uu
Ψ(ti)− U c

Ψ(ti)
= d0. (35)

• If the resulting value q is smaller than zd, then, according
to our analysis, this means that the optimal k is larger than
d, so we replace the original value � with d.

• If the resulting value q is larger than zd+1, then, according
to our analysis, this means that the optimal k is smaller
than d, so we replace the original value u with d.

The algorithm stops when u = �+1, in which case we have
the desired q. Based on this q, we can compute all coverage
probabilities by using the above formula

ci = min

(
max

(
Uu
Ψ(ti)− q

Uu
Ψ(ti)− U c

Ψ(ti)
, 0

)
, 1

)
. (36)

There is one more special case the must be considered
to ensure that this solution is in fact a Strong Stackelberg
Equilibrium. This case occurs when at least one target has
coverage ci = 1. In this case, we must ensure that the target
that gives maximum payoff for the defender has an optimal
payoff for the attacker (so far, we have considered only the
payoffs for the attacker). This can be done by first finding
the maximal covered payoff for the attacker U c

Ψ(t) for any
target that has coverage probability 1. Denote this target by
tmax. We then loop through each of the targets to determine
whether the defender would achieve a higher payoff if the
coverage probability was reduced so that the attackers ex-
pected payoff was equal to U c

Ψ(tmax). We can compute the
necessary coverage for each target using the equation:

ci =
U c
Ψ(tmax)− Uu

Θ(ti)

U c
Θ(ti)− Uu

Θ(ti)
(37)

If the defender’s expected payoff for target ti is greater
than U c

Ψ(tmax) given ci, then we reduce the coverage prob-
ability to this new value ci for target ti. Note that this can
only reduce the total coverage probability required. The ad-
ditional coverage can either be left unallocated or assigned
arbitrarily to any target for which the attacker has an ex-
pected payoff less than U c

Ψ(tmax).
Let us prove that this algorithm indeed takes time

O(n · log(n)). (38)

Sorting can be done in time O(n · log(n)) (Cormen et al.
2009). At each stage of the bisection method, we handle
each target once, so each stage takes O(n) computational
steps. We start with an interval [�, u] of size 2n. At each
stage, we replace it with a half-size interval [�, d] or [d, u].
Thus, after the first iteration, we get an interval of size n,
after the second, of size n/2, . . . , and after k-th iteration,
an interval of size (2n)/2k. Thus, this procedure stops af-
ter log2(2n) iterations. So, the overall computation time is
indeed

O(n · log(n)) +O(n) · log(2n) = O(n · log(n)). (39)

The final stage or analysis for the special case where at
least one target coverage ci = 1 requires two loop through
each target. The first identifies the fully-covered target with
maximum payoff for the attacker U c

Ψ(tmax). The second
calculates the required reduction in coverage probability to
make the attacker indifferent between tmax and any other
target, and replaces the coverage probability if a reduction is
beneficial for the defender. Since this requires time O(2 ·n),
the overall complexity remains O(n · log(n)).

Conclusion

We have presented two new algorithms for a fundamental
class of Stackelberg security games. These algorithms op-
erate in linear time for a restricted case, and O(n · log(n))
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for the general case, both improvements over the best known
algorithms for this class of games. The algorithms are based
on new analysis of the structure of the game-theoretic solu-
tions of these games, which may provide insights to improve
the efficiency of algorithms for additional classes of security
games.
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