
Normalizing Microtext

Zhenzhen Xue, Dawei Yin and Brian D. Davison
Department of Computer Science & Engineering, Lehigh University

Bethlehem, PA 18015 USA
{zhx208, day207, davison} @cse.lehigh.edu

Abstract

The use of computer mediated communication has resulted in
a new form of written text—Microtext—which is very differ-
ent from well-written text. Tweets and SMS messages, which
have limited length and may contain misspellings, slang, or
abbreviations, are two typical examples of microtext. Micro-
text poses new challenges to standard natural language pro-
cessing tools which are usually designed for well-written text.
The objective of this work is to normalize microtext, in order
to produce text that could be suitable for further treatment.
We propose a normalization approach based on the source
channel model, which incorporates four factors, namely an
orthographic factor, a phonetic factor, a contextual factor and
acronym expansion. Experiments show that our approach can
normalize Twitter messages reasonably well, and it outper-
forms existing algorithms on a public SMS data set.

Introduction

The Web has become the channel in which people communi-
cate, write about their lives and interests, and give opinions
and rate products. In some contexts, users, especially young
users, write in an informal way without minding spelling or
grammar, even deliberately shortening the words or using
slang. Words or phrases such as “lol” (laugh out loud), “c
u 2nite” (see you tonight) and “plz” (please) which may not
be found in standard English are widely used by Web users.
The casual usage of language results in a new form of writ-
ten text which is very different from well-written text. This
chat-speak-style text is especially prevalent in Short Mes-
sage Service (SMS), chat rooms and micro-blogs. Such chat-
speak-style text is referred to as Microtext by (Ellen 2011).
In this work, Tweets and SMS messages are explored as typ-
ical examples of microtext.

There has been a big effort to produce natural language
processing (NLP) algorithms and tools that try to under-
stand well-written text, but these tools cannot be applied
out of the box to analyze microtext which usually con-
tains noise, including misspellings, abbreviations and im-
proper grammar. Tools such as Named Entity Recogni-
tion have been reported to have substantially lower perfor-
mance on Tweets than on structured text, partly due to the
high amount of noise present in Tweets (Murnane 2010;

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Corvey et al. 2010). In order to effectively retrieve or mine
data from microtext, it is necessary to normalize the micro-
text, so that they are more readable for machines and hu-
mans, and become suitable for further treatment using stan-
dard NLP tools.

The task of microtext normalization addressed in this
work has many similarities to traditional spelling correc-
tion but also poses additional challenges. Both the fre-
quency and severity of spelling errors in microtext are sig-
nificantly greater than in normal text. In our datasets, a sig-
nificant fraction of microtext (31% of Twitter messages,
92% of SMS messages) requires normalization. In micro-
text, sometimes words are misspelled due to typographic er-
rors such as “positon” for “position”. In other cases, such
Non-Standard Words (NSWs), words which are written dif-
ferently from their standard forms, are used intentionally
for various reasons, including phonetic spelling (enuf for
enough), emotional emphasis (goooood for good), popular
acronyms (asap for as soon as possible), etc. Some NSWs
are so widely used such that they are more recognizable than
their original standard forms such as ATM, CD, PhD and
BMW. Typically, the validity of a microtext term cannot be
decided by lexicon look-up or by checking its grammatical-
ity. Therefore, general purpose spelling correction methods
which rely on lexicon look-up are not able to solve the prob-
lem of normalizing microtext.

In this paper, we address the problem of normalizing mi-
crotext using the source channel model. The problem of
normalizing microtext is viewed as that of recovering the
intended word or word sequence given an observed word
which may or may not be a NSW. Our model will take four
factors into consideration, namely, character string-based ty-
pographical similarity, phonetic similarity, contextual simi-
larity and popular acronyms.

Related Work

The following sections compare microtext normalization
with similar and related applications.

General Text Normalization

General text normalization has been well studied in text-to-
speech (Sproat et al. 2001). General text normalization deals
with tokens such as numbers, abbreviations, dates, currency
amounts and acronyms which are normative while microtext

Analyzing Microtext: Papers from the 2011 AAAI Workshop (WS-11-05)

74

normalization needs to deal with lingo such as “l8” (late)
and “msg” (message), which are typically self-created and
are not yet formalized in linguistics. Moreover, microtext is
brief, containing a very limited number of characters (140
characters for Tweets, and 160 characters for SMS mes-
sages). It is thus much more difficult to use contextual or
grammatical information.

Spelling Correction

Short message normalization has many similarities with tra-
ditional spelling correction which has a long history. There
are two branches of research in conventional spelling correc-
tion, which deal with non-word errors and real-word errors
respectively.

Non-word correction is focused on generating and rank-
ing a list of possible spelling corrections for each word
not found in a spelling lexicon. The ranking process usu-
ally adopt some lexical-similarity measure between the mis-
spelled string and the candidates considering different edit
operations (Damerau 1964; Levenshtein 1966), or a proba-
bilistic estimation of the likelihood of the correction candi-
dates (Brill and Moore 2000; Toutanova and Moore 2002).
Real-word spelling correction is also referred to as context-
sensitive spelling correction, which tries to detect incorrect
usage of valid words in certain contexts (Golding and Roth
1996; Mangu and Brill 1997).

Spelling correction algorithms rely on spelling lexicons
to detect misspelled tokens, which is an unrealistic ap-
proach for microtext normalization. Short messages often
contain valid words that are not found in any traditional
lexicon (e.g., iTune, Picasa), sometimes may even contain
in-lexicon words that are actually intended to be other le-
gitimate words (I don’t no for I don’t know, and agree wit
u for agree with you). In the open Web, we clearly cannot
construct a static trusted lexicon, as many new names and
concepts become popular every day and it would be difficult
to maintain a high-coverage lexicon. Therefore, the models
used in spelling correction are inadequate for microtext nor-
malization.

SMS Normalization

While there are few attempts to normalize Twitter messages
or microtext in general, there is some work on SMS nor-
malization. Text messages, which are also called Short Mes-
sage Service (SMS) texts, are similar to Tweets considering
the length of messages and the devices used to generate the
messages.

Text message normalization has been handled through
three well-known NLP metaphors: spelling correction, ma-
chine translation and automatic speech recognition. The
spelling correction metaphor (Choudhury et al. 2007; Cook
and Stevenson 2009) performs the normalization task on a
word-per-word basis by applying the noisy channel model.
The machine translation metaphor, first proposed by Aw et
al. (2006), considers the process of normalizing text mes-
sages as a statistical phrase-based machine translation task
from a source language (the text message) to a target lan-
guage (its standard written form). Kobus et al. (2008) pro-
posed to handle text message normalization through an auto-

matic speech recognition metaphor based on the observation
that text messages present a lot of phonetic spellings. Beau-
fort et al. (2010) took a hybrid approach which combines
spelling correction and machine translation methods.

Our generic approach, detailed below, incorporates com-
ponents from both spelling correction and automatic speech
recognition.

Normalization Model

Given a piece of microtext, our model will normalize terms
one by one. Thus, the challenge is to determine the corre-
sponding standard form t, which can be a term or a sequence
of terms, for each observed term t′. Notice that t may or may
not be the same with t′. t′ is a NSW if t′ �= t. Thus, the task
is to find the most probable normalization t∗ for each ob-
served term t′:

t∗ = argmax
t

P (t|t′) = argmax
t

P (t′|t)P (t) (1)

P (t′|t) models the noisy channel through which an in-
tended term t is sent and is corrupted into the observed term
t′. P (t) models the source that generates the intended term
t. In practice, the source model can be approximated with an
n-gram statistical language model.

Since a non-standard term and its corresponding standard
form might be similar from one or multiple perspectives(s),
it is reasonable to assume that there are several channels,
each of which would distort an intended term in one of the
above aspects. More specifically, a grapheme channel would
be responsible for the spelling distortion, a phoneme chan-
nel would cause phonetic corruptions, a context channel may
change terms around a target term and an acronym channel
may shrink a sequence of terms into one term. In reality, an
intended word may be transferred through one or multiple
channels, and an observed term might be a mixed corruption
from more than one channel. Under this assumption, and let-
ting {ck|ck ∈ C} denote the set of channels, Equation 1 can
be further developed to

t∗ = argmax
t

∑
k

P (t′, ck|t)P (t)

= argmax
t

∑
k

P (t′|ck, t)P (ck|t)P (t)
(2)

A term t is transferred through channel ck with probability
P (ck|t). Within the channel ck, term t is distorted to term t′
according to the channel model P (t′|ck, t).
Channel Models

In this section, we will describe and formulate each of the
four channels in detail.

Grapheme Channel. The grapheme channel models the
distortion of spellings. One method to model this channel
is to consider P (t′|cgrapheme, t) to be proportional to the
similarity between a NSW and its normalization. The more
similar a normalization candidate is to the NSW t′, the more
likely it is the correct normalization for t′. This gives

P (t′|cgrapheme, t) ∝ Sim(t′, t)

75

t′ Candidates Contexts & Normaliza-
tions

yr your, year it’s yr (your) turn
happy new yr (year)

wll will, well, wall i wll (will) leave
bin bin, been have bin (been) really

happy since ...
no no, know don’t no (know) why

Table 1: The importance of context in normalization

where Sim(t′, t) is the string-based similarity measure
which is evolved from (Kothari et al. 2009):

Sim(t′, t) =
LCSRatio(t′, t)

Distance(CS(t′), CS(t))
(3)

In Equation 3, LCSRatio(t′, t) means Longest Com-
mon Subsequence Ratio between t′ and t, which is the ra-
tio of the length of their LCS and the length of the longer
string. Distance(CS(t′), CS(t)) is the weighted Conso-
nant Skeleton Levenshtein Distance between t′ and t which
gives lower weight to deletion operations based on the ob-
servation that NSWs often delete characters from, but sel-
domly add characters to their standard forms. For example,
a NSW “abt” is more likely to mean “about” than “at”. The
consonant skeleton of a term is generated by first removing
consecutive repeated characters and then removing all vow-
els.

Phoneme Channel. The phoneme channel is responsible
for distortion in pronunciations. Similar to the grapheme
channel, the probability of t being transformed into t′ is pro-
portional to the similarity between the two terms, except that
the similarity is measured on the phonetic representations in-
stead of on orthographic forms:

P (t′|cphoneme, t) ∝ Sim(L2P (t′), L2P (t))

Thus, a crucial step is Letter-to-Phoneme (L2P) conver-
sion, which is to estimate the pronunciation of a term, rep-
resented as a sequence of phonemes, from its orthographic
form, represented as a sequence of letters. There has been
a lot of research on letter-to-phoneme conversion including
works from van den Bosch et al. (2006), Jiampojamarn et
al. (2008), Bartlett et al. (2008), and Rama et al. (2009). We
use the method proposed by Rama et al. which treats the L2P
problem as a machine translation problem and has the trans-
lation performance comparable to the state-of-art algorithms
such as Jiampojamarn et al. Our L2P model is trained based
on the CMU Pronouncing Dictionary (CMUDict) using the
optimal parameters specified by Rama et al. (2009).

After the L2P conversion, the similarity measure between
two phoneme sequences is the same as the similarity mea-
sure used in the grapheme channel except that a uniform
weight Levenshtein distance is used instead of weighted
Levenshtein distance.

Context Channel. Contextual information provides use-
ful clues to find the most probable normalization. Table 1
lists several examples in which context plays an important

role during normalization. In each example, the table shows
the observed NSW (t′), selected normalization candidates,
the context in which the NSW appears and the correct nor-
malization. An ambiguous NSW, such as the example of
“yr”, may refer to different standard words in different con-
texts. With the help of context, the correct normalization
may be determined by considering the n-gram probability.
There are also some situations in which real-word errors
need to be handled, such as the examples “bin” and “no”
in Table 1.

Our context channel model is based on an n-gram lan-
guage model, which is trained on a large Web corpus and
would return a probability score for a query word or phrase.
The context channel model can be written as

P (t′|ccontext, t) ∝ prob(Ctxt)

where prob() is the probability score based on the language
model, and Ctxt is the context (sequence of terms) contain-
ing the normalization candidate t. Ctxt consists of up to N
words to either side of the target word, where N = 3. Thus,
Ctxt could be trigram, bigram or unigram (when no context
is available).

For each normalization candidate tij of term t′i, there is a
different context containing the candidate itself. In general,
when the current term has preceding terms, we would use
its normalized preceding terms as its context. Otherwise, the
following N − 1 non-normalized terms would be used. The
preceding terms are preferred to succeeding terms because
of the fact that a term being examined is usually not sur-
rounded by clean context. Based on the assumption that the
normalization for all or at least most of the preceding terms
are correct, using normalized preceding terms provides more
reliable context information than using non-normalized suc-
ceeding terms.

Acronym Channel. All of the above three channel mod-
els deal with word-to-word normalization. However, there
are popular acronyms such as “asap”, “fyi” and “lol” which
are widely used and involve word-to-phrase mappings. The
acronym channel is a complementary model which takes
into consideration the one-to-many mapping.

P (t′|cacronym, t) =

{
1, if (t′, t) ∈ A

0, otherwise

A = {(t′, t)|t′ is the acronym for t} is a set of popular
acronyms and their corresponding full forms collected from
a public website1. Thus, if a normalization candidate is a full
form for the observed term, it would get a score of 1.

Channel Probabilities

In Equation 2, channel models are combined using channel
probabilities P (ck|t).
Generic Channel Probabilities. For the reason of sim-
plicity, an assumption that word t and channel ck are inde-

1http://www.webopedia.com/quick˙ref/
textmessageabbreviations.asp

76

pendent of each other is made and Equation 2 can be simpli-
fied to

t∗ = argmax
t

∑
k

P (t′|ck, t)P (ck|t)P (t)

� argmax
t

∑
k

P (t′|ck, t)P (ck)P (t)

in which P (t) is the language model, P (ck) is the prior
probability for channel ck, and P (t′|ck, t) is the channel
model.

The probability of a term being emitted through a certain
channel is independent of the term itself. In addition, the
probabilities of the four channels can be tuned to achieve
the best normalization performance.

Term Dependent Channel Probabilities. The assump-
tion that term t is independent of a noisy channel ck may
not always be true. Some terms are more likely to be written
using phonetic spellings, while others tend to be abbreviated
based on orthographic similarities. Ideally, the model needs
to estimate P (ck|t), term dependent channel probabilities.
Thus, P (ck|t), the probability of a term t being transferred
through a specific channel ck needs to be learned from train-
ing data.

Given a term t′ with J normalization candidates, and each
candidate tj with a score Gj from the grapheme channel,
score Pj from the phoneme channel, score Cj from the con-
text channel and score Aj from the acronym channel, func-
tion f is defined as

fj = αGj + βPj + γCj + δAj

where α, β, γ and δ are term-dependent channel probabili-
ties.

Suppose that tl is the correct normalization. The system
would output a correct normalization if fl ≥ fj(1 ≤ j ≤ J)
holds. Naturally, the goal is to learn the value of α, β, γ
and δ for tl such that

∑J
j=1 fl − fj is maximized. Thus, the

objective function h is defined as

h = argmax

J∑
j=1

s(fl − fj)

where s(x) is the sigmoid function.
The optimal combination weights can be achieved by tak-

ing the gradient descent method in which the four parame-
ters are updated in each step until they converges.

By taking this strategy, the probabilities of the four chan-
nels are estimated per term. There would be a group of opti-
mal channel probabilities (α, β, γ, and δ) for each correction
normalization.

For each term t′ in a short message, the normalization can-
didates are terms in CMUDict with the same initial letter and
t′ itself. Candidates are then ranked according to Equation 2.
The candidate which is ranked highest would be the output
of normalization.

Experiments

Experiment Setup

In order to evaluate the normalization performance of our
system, we did experiments on two different datasets. One

is a Twitter message dataset. A public SMS dataset is addi-
tionally used to compare our performance against previous
work.

A Twitter message is a typical microtext which has lim-
ited length. For the normalization task, we manually normal-
ized 818 tweets which were collected in September 2010.
Among these tweets, 253 (31%) messages need normaliza-
tion, with a total of 479 word transformations. A word fol-
lowing @ or # would not be normalized as we consider these
two symbols as signifying reserved tokens (user id or hash-
tag) in tweets.

SMS messages, which are similar to Twitter messages,
can be viewed as another type of microtext. Our experiments
are based on a public parallel English SMS dataset provided
by Choudhury et al. (2007). The training set has 854 text
messages and the test set has 138 text messages. In the test
set, 127 (92%) messages need normalization, with an aver-
age of 4 word transformations per message.

We considered two kinds of language models in our
experiments. One is the Microsoft Web N-gram Service2

which is a public Web service that provides statistical lan-
guage models based on Web data (Wang et al. 2010). The
other is a language model built from 18,000,000 raw tweets,
which includes 3,872,108 unigrams, 27,093,464 bigrams
and 10,010,590 trigrams. While there is no significant dif-
ference between the experiment results by using the two
different language models on the Twitter dataset, Web N-
gram language model performs better than Twitter language
model on the SMS dataset. The following results are re-
ported based on the Microsoft Web N-gram language model.

Two variations of our model, multi-channel model with
generic channel probabilities (MC-Generic) and multi-
channel model with term-dependent channel probabilities
(MC-TD), are compared with the current best result (Choud-
hury et al. 2007) on the public SMS dataset. We also com-
pare with two other approaches: the standard spell checker
Aspell, and a machine translation method (MT) represented
by the Moses (Koehn et al. 2007) toolkit with factored
model. Both MC-TD and MT approaches require training
data. Thus, on the Twitter dataset, the results of the MT
method and MC-TD model are reported based on 5-fold
cross validation. The SMS dataset comes with training data,
which is used by these two approaches.

We consider following four standard metrics in the eval-
uation process, namely, accuracy, precision, recall and F-
measure.

Results

Table 2 compares the performance of our system with that
of baseline algorithms on the two datasets. The SMS dataset
is relatively small and clean compared with the Twitter
dataset. Thus, all algorithms achieve better performance on
this dataset.

Overall, the performance of Aspell is far behind the other
algorithms on both datasets. While the Moses toolkit per-
forms better than the spelling correction method proposed
in (Choudhury et al. 2007), our model outperforms all the

2http://Web-ngram.research.microsoft.com

77

Twitter Dataset SMS Dataset
Aspell Moses MC-

Generic
MC-TD Aspell Choud-

hury07
Moses MC-

Generic
MC-TD

Accuracy 0.92 0.94 0.96 0.96 0.63 0.86 0.92 0.95 0.96
F-measure 0.06 0.41 0.61 0.61 0.13 n/a 0.87 0.89 0.91
Precision 0.08 0.76 0.50 0.50 0.23 n/a 0.88 0.89 0.93
Recall 0.05 0.28 0.78 0.79 0.09 n/a 0.86 0.90 0.90

Table 2: Normalization results on Twitter and SMS dataset.

comparison algorithms by having higher accuracy and F-
measure. When breaking F-measure into precision and re-
call, notice that our multi-channel model achieves much
higher recall than the comparison algorithms, especially on
Twitter, which means that our model is able to identify more
NSWs. This is because that our system actually models the
correspondences between NSWs and their normalizations
while the MT method learns the correspondences by rote.
For example, word “love” is observed in several different
but similar non-standard forms including “luv”, “lurve” and
“lurrrrvve”. All these three NSWs can be properly handled
by our multi-channel model. But in the MT method, learn-
ing one of these non-standard forms doesn’t help in predict-
ing the correct normalization for the other two. Thus, the
advantage of our model is that it captures the lexical cre-
ativity observed in microtext, which enables the system to
normalize new NSWs. Twitter messages contain a lot of en-
tity names and people names which increase the difficulty of
normalization. Our model has a relatively low precision on
the Twitter dataset because it normalizes some entity names
wrongly. Since the MT method only normalizes NSWs that
are learned during the training phase, it can achieve higher
precision than our model.

MC-TD model performs slightly better than MC-Generic
model on the SMS dataset, while the two models have
roughly the same performance on the Twitter dataset. In
MC-Generic model, a correct normalization candidate may
not be ranked the first among a set of candidates due to sub-
optimal channel weights. The MC-TD model has the poten-
tial to improve the performance by providing a more accu-
rate estimation of channel probabilities, which would reduce
such ranking errors. However, it is expensive to estimate the
term-dependent weights in MC-TD model, requiring a large
amount of data. From the experiments, the improvement of
MC-TD over MC-Generic model is not significant consider-
ing the computational cost of MC-TD.

We further analyze the usefulness of each channel in the
MC-Generic model. Since the acronym channel maps from
words to phrases, which is different from the other three
channels, it is always necessary to include the acronym
channel. Thus, we only investigate the weights of the other
three channels. The ternary plots in Figure 1 show the influ-
ence of channel weights on system performance, in which
each dimension represents one of the three channels, and
performance scores are grouped into classes in which larger
numbers correspond to better performance. The Figure sug-
gests that the three channels are contributing to the perfor-
mance to different extents. In the Twitter message dataset,

the grapheme and phoneme channels have comparable con-
tributions to the overall performance, while the context
channel has a relatively small contribution. The best nor-
malization performance is achieved when the channel prob-
abilities are α = 0.25, β = 0.2, γ = 0.05 and δ = 0.5
where α, β, γ and δ correspond to the grapheme chan-
nel, phoneme channel, context channel and acronym chan-
nel respectively. In the SMS dataset, the best performance is
achieved when the weights of the three channels are roughly
balanced (α = 0.15, β = 0.15, γ = 0.2 and δ = 0.5). Us-
ing the grapheme channel alone can get reasonable perfor-
mance, while adding the phoneme and context channels help
to improve the normalization result. Compared with the per-
formance from Twitter messages, the context channel plays
a more important role in the SMS dataset.

Conclusions and Future Work

This paper proposed a multi-channel model inspired by
source channel theory to normalize microtext. Our model
outperforms baseline algorithms on two typical datasets. We
showed that orthographic, phonetic and contextual informa-
tion and acronym expansion are four important factors for
the normalization of microtext.

We note that a paper to be published shortly by Han and
Baldwin (2011) uses some of the same intuitions as our
work, but on different data and with an evaluation approach
that assumes perfect recognition of ill-formed words. We
hope to compare our approach to their work in the near fu-
ture. In addition, we want to investigate the impact of micro-
text normalization on other NLP or IR tasks.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant Number IIS-0916152.

References
Aw, A.; Zhang, M.; Xiao, J.; and Su, J. 2006. A phrase-based
statistical model for SMS text normalization. In Proc. of the COL-
ING/ACL on Main conference poster sessions, 33–40.
Bartlett, S.; Kondrak, G.; and Cherry, C. 2008. Automatic syllabi-
fication with structured SVMs for letter-to-phoneme conversion. In
Proc. of ACL-08: HLT, 568–576.
Beaufort, R.; Roekhaut, S.; Cougnon, L.-A.; and Fairon, C. 2010.
A hybrid rule/model-based finite-state framework for normalizing
sms messages. In Proc. of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL ’10, 770–779.
Brill, E., and Moore, R. C. 2000. An improved error model for
noisy channel spelling correction. In Proc. of the 38th Annual

78

Ph
on
em
e

G
raphem

e

Context

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

0

1

2

2

3

3

3

3

3

2

2

0

3

3

3

3

3

3

3

3

2

1

3

3

3

4

4

3

3

3

2

3

3

4

4

4

4

3

3

3

4

5

5

4

4

3

3

4

5

5

4

3

4

4

5

5

3

4

4

5

3

4

4

3

43

Group
0:Accuracy>0.90
1:Accuracy>0.91
2:Accuracy>0.92
3:Accuracy>0.93
4:Accuracy>0.94
5:Accuracy>0.95

(a) Twitter dataset

Ph
on
em
e

G
raphem

e

Context

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

0

0

3

3

3

3

3

3

2

1

0

0

3

3

3

4

4

3

3

3

2

3

3

3

4

4

5

3

3

2

3

3

4

4

5

4

3

3

3

4

4

5

4

3

3

3

4

4

4

4

3

3

4

4

4

3

3

4

4

3

3

4

3

3

33

Group
0:Accuracy>0.90
1:Accuracy>0.91
2:Accuracy>0.92
3:Accuracy>0.93
4:Accuracy>0.94
5:Accuracy>0.95

(b) SMS dataset

Figure 1: Influence of channel weights on normalization performance.

Meeting on Association for Computational Linguistics, ACL ’00,
286–293.
Choudhury, M.; Saraf, R.; Jain, V.; Mukherjee, A.; Sarkar, S.; and
Basu, A. 2007. Investigation and modeling of the structure of
texting language. Int. J. Doc. Anal. Recognit. 10:157–174.
Cook, P., and Stevenson, S. 2009. An unsupervised model for text
message normalization. In Proc. of the Workshop on Computa-
tional Approaches to Linguistic Creativity, CALC ’09, 71–78.
Corvey, W. J.; Vieweg, S.; Rood, T.; and Palmer, M. 2010. Twitter
in mass emergency: what NLP techniques can contribute. In Proc.
of the NAACL HLT 2010 Workshop on Computational Linguistics
in a World of Social Media, WSA ’10, 23–24.
Damerau, F. J. 1964. A technique for computer detection and
correction of spelling errors. Commun. ACM 7:171–176.
Ellen, J. 2011. All about microtext: A working definition and
a survey of current microtext research within artificial intelligence
and natural language processing. In Proc. of the Third International
Conference on Agents and Artificial Intelligence.
Golding, A., and Roth, D. 1996. Applying winnow to context-
sensitive spelling correction. 182–190.
Han, B., and Baldwin, T. 2011. Lexical normalisation of short
text messages: Makn sens a # twitter. In Proc. of the 49th Annual
Meeting on Association for Computational Linguistics, ACL ’11.
To appear.
Jiampojamarn, S.; Cherry, C.; and Kondrak, G. 2008. Joint pro-
cessing and discriminative training for letter-to-phoneme conver-
sion. In Proc. ACL, 905–913.
Kobus, C.; Yvon, F.; and Damnati, G. 2008. Normalizing SMS:
are two metaphors better than one? In Proc. of the 22nd Interna-
tional Conference on Computational Linguistics - Volume 1, COL-
ING ’08, 441–448.
Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Federico, M.;
Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.; Zens, R.; Dyer, C.;
Bojar, O.; Constantin, A.; and Herbst, E. 2007. Moses: open source
toolkit for statistical machine translation. In Proc. of the 45th An-
nual Meeting of the ACL on Interactive Poster and Demonstration
Sessions, ACL ’07, 177–180.
Kothari, G.; Negi, S.; Faruquie, T. A.; Chakaravarthy, V. T.; and
Subramaniam, L. V. 2009. SMS based interface for FAQ retrieval.
In Proc. of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP: Volume 2 - Volume 2, ACL-
IJCNLP ’09, 852–860.
Levenshtein, V. 1966. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics Doklady 10:707.
Mangu, L., and Brill, E. 1997. Automatic rule acquisition for
spelling correction. In Proc. of the 14th International Conference
on Machine Learning, 734–741.
Murnane, W. 2010. Improving Accuracy of Named Entity Recog-
nition on Social Media Data. Master’s thesis, University of Mary-
land.
Rama, T.; Singh, A. K.; and Kolachina, S. 2009. Modeling letter-
to-phoneme conversion as a phrase based statistical machine trans-
lation problem with minimum error rate training. In NAACL ’09:
Proc. of Human Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Association for Compu-
tational Linguistics, Companion Volume: Student Research Work-
shop and Doctoral Consortium, 90–95.
Sproat, R.; Black, A. W.; Chen, S.; Kumar, S.; Ostendorf, M.; and
Richards, C. 2001. Normalization of non-standard words. Com-
puter Speech and Language 15(3):287–333.
Toutanova, K., and Moore, R. C. 2002. Pronunciation modeling for
improved spelling correction. In Proc. of the 40th Annual Meeting
of the Association for Computational Linguistics, ACL ’02, 144–
151.
van den Bosch, A., and Canisius, S. 2006. Improved morpho-
phonological sequence processing with constraint satisfaction in-
ference. In Proc. of the Eighth Meeting of the ACL Special Interest
Group on Computational Phonology and Morphology, SIGPHON
’06, 41–49.
Wang, K.; Thrasher, C.; Viegas, E.; Li, X.; and Hsu, B.-j. P. 2010.
An overview of Microsoft web N-gram corpus and applications.
In Proceedings of the NAACL HLT 2010 Demonstration Session,
HLT-DEMO ’10, 45–48. Stroudsburg, PA, USA: Association for
Computational Linguistics.

79

