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Abstract 

Human computing promises new capabilities that cannot be 
easily provided by computing machinery.  However, 
humans are less disciplined than their mechanical 
counterparts and hence are liable to produce accidental or 
deliberate mistakes.  As we start to develop regimes for 
identifying and correcting errors in human computation, we 
find an important model in the computing groups that 
operated at the start of the 20

th
 century. 

 Introduction   

Far from being a new idea, Human Computation has a long 

history that predates Amazon Mechanical Turk, the 

Internet, software and even the development of the 

electronic digital computer.  Organized computing groups 

appeared in the 18th century, flourished in the 19th, and 

reached their zenith in the first decades of the 20th.  These 

groups were found in organizations such as Royal Nautical 

Almanac, the Connaissance des Temps, the British 

Association for the Advancement of Science, the U. S. 

Coast and Geodetic Services, and the Works Progress 

Administration.  Working with tools no more sophisticated 

than pen and pencil, these offices were able to complete 

major computations, tasks that were far beyond the ability 

of a single individual working with the best the calculating 

machinery of the day.   

 

All of these organizations were concerned with errors in 

their work, errors that could propagate from their results 

through the calculations of others.  Rather than resort to the 

obvious techniques of multiple calculation or highly 

disciplined verification, these groups developed procedures 

for error identification and correction.  These procedures 

involved careful numerical analysis and disciplined 
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managerial instructions.  Like so many operational 

procedures, these methods produced good results not by 

demanding the best qualities of the human computers but 

by providing symbolic checks against their worst lapses.   

 

In reviewing the historical methods for error identification 

and correction, we see that they were designed for the 

kinds of labor markets that we see in modern human 

computation and that they provide a model for addressing 

new problems.  This model includes a well-defined 

computing plan, tools for guiding the human computers, 

and a set of computational procedures that identify the 

kinds of errors that are most likely to be made.   Most 

importantly, this model required that all that all human 

calculations be bounded.  

Human Computing Organization 

For this paper, a human computing organization will be 

defined to require three distinct elements: a labor pool or 

workers, tasks that are based on the fine division of labor, 

and a market mechanism that is used for assigning tasks to 

workers.   

 

The labor pool consists of workers who have the minimal 

set of skills to do the work that is required of them.  

However, we make no assumptions about their ability to 

understand the goal or the computation or to identify 

results that are inconsistent with that goal. 

 

The tasks are elementary units of work.  By assuming that 

these tasks are based on a fine division of labor, we accept 

that they may they might convey no information about the 

overall goal of the calculation.  For example, the 

computing rooms of large observatories divided the 

calculation of orbital ephemerides into a large number of 

simple additions.  The computers in these rooms did the 
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additions without knowing how they related to the final 

orbital positions. 

 

The market mechanism is a place where the organization 

can place requests for calculation and human computers 

can accept those requests.  In the historical computing 

offices, this mechanism was a set of shelves that held 

worksheets.  The worksheets were pages that held the 

request for calculation.  The human computers could select 

the sheets that they wanted to handle, take them to their 

desk or home, and return them when they were finished.  

Historically, these markets operated on piece –work rules.  

They paid the computers by the sheet.  However, the 

offices that adopted factory methods usually paid workers 

by the day.   

 

These basic elements of human computation were 

developed in the 18
th

 century and were discussed by 

Charles Babbage (1791-1871) in his 1832 book, On the 

Economy of Machines and Manufactures.  Building on the 

work of Adam Smith, Babbage argued that organized 

computation demonstrated that “the division of labour can 

be applied with equal success to mental as to mechanical 

operations, and that it ensures in both the same economy of 

time.”(Babbage 1832) 

 

In writing about human computation, Babbage recognized 

the problem of identifying and correcting errors and 

articulated a fundamental observations about human 

computation that has since been called “Babbage’s Law of 

Errors.”  He noted that two individuals who used the same 

computing methods on a the problem were likely to make 

the same mistake.(Buxton 1988)   

 

Babbage was a highly dedicated calculator.  His 1827 table 

of logarithms is considered “one of the most accurate ever 

printed.”(Fletcher 1946). In his frustration with 

computational errors, Babbage turned from human 

calculation to the design of computation machinery.  This 

approach proved to be impracticable as almost a century 

would pass before his simplest machine, called the 

Difference Machine, would make a substantial impact on 

calculation.(Comrie, 1936)  In the intervening years, 

scientists and engineers could only complete large 

calculations by organizing a computing and finding a way 

to control error. 

 

The organization that probably did the best job of 

controlling errors was the Mathematical Tables Project, 

which operated in New York City from 1938 to 1948.  As 

its name implies, the Mathematical Tables Project created 

large volumes of tables of higher mathematical functions 

and other complicated scientific calculations.  As the group 

was a relief project of the Works Progress Administration, 

its leaders were very concerned about establishing a 

reputation or producing error-free calculation.(Grier 2005)   

 

The leaders of the group regularly claimed that their work 

contained no mistakes.  An independent assessment of the 

tables concluded that this claim was not true.  However, 

they acknowledged the errors were both minor and rare. 

The 28 volumes of tables, most of which had more 500 

pages of numbers, contained only a handful of 

errors.(Fletcher 1946) 

 

Planning and Errors 

The Mathematical Tables Project was managed by an 

operational group called the Planning Committee.  This 

committee, lead by the mathematician Gertrude Blanch, 

analyzed proposed calculations and prepared plans for the 

calculation.  Part of this work was similar to modern 

numerical analysis.  They would look for an algebraic 

approximation for the function, study how quickly that 

approximation converged and determine the difference 

between any computed value and the underlying function.  

In developing these plans, Blanch and her lieutenants 

tended to utilized conventional approximations such as 

Taylor series, though Blanch had a fondness for continued 

faction expansions(Blanch 1945) 

 

In addition to doing the standard numerical analysis, the 

Planning Committee had to divide the calculations into 

elementary tasks, prepare worksheets to guide the 

computers through the tasks, and create procedures for 

assembling the results of the computations into a complete 

table.  For the most part, the Mathematical Tables Project 

utilized three elementary tasks: multi-digit addition, multi-

digit subtraction, and the multiplication of a multi-digit 

number by a single digit.  In a few cases, they identified 

long division as an elementary task but they had few 

human computers who were able to handle this task.  Even 

subtraction proved difficult at times.  To avoid confusion, 

the ultimately recorded all negative numbers with red 

pencils.(Grier 2005) 

 

As they developed the plan, Blanch and her committee 

tried to identify errors by bounding key calculations.  

While they could not bound every single elementary 

calculation, they had identified bounded values for every 

step of the calculation including those steps that assembled 

the final values and transferred them to a typescript.  For 

some of these values, they developed bounds using the 

underlying properties of the underlying calculation.  For 

others, they utilized a general technique that was derived 

from the method of finite differences. 
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Bounding Calculations 

Targeted Values 

As the first step in its plan, Gertrude Blanch would divide 

the computation into a small set of open-ended calculations 

and a large group of interpolations.  The open-ended 

calculations would be done by the members of the 

Planning Committee, all of whom held advanced degrees 

in mathematics, physics or astronomy.  They generally 

computed these values with a high-order Taylor expansion.  

They would compare their results to known values and 

circulate the computations among themselves to check for 

errors.  For their first large calculation, a book of the 

exponential function, they computed 28 such values.   

 

The seed values created a box for the final tables.  They 

included the first value of the table, the last value, and a 

regularly spaced set of points within those two values.  

Once they had produced these values, they would create a 

procedure for the bounded computations.  These 

computations would start at one seed value and compute a 

series of function values at regular intervals.   This series 

would end at the next seed value, giving the human 

computers a clear target.  If the last computation did not 

equal the next seed value, the sheet contained an error.   

 

Blanch required that all values be double computed.  As 

she was knew about Babbage’s Law of Errors she used a 

different equation for each computation.  In general, she 

created one equation that would take the computations 

from the low seed value to a higher seed value and a 

second equation that would work backward from the 

higher seed value to the lower.   

 

For the exponential function, she based her two equations 

on the observation that e
x+h

=e
x
(O+E) and e

x-h
=e

x
(O-E), 

where h, was the interval at which values of the function 

were to be computed.  The values O  and E were constants 

that were computed from the odd and even terms of the 

Taylor expansion, respectively.  These values were 

computed and checked by the Planning Committee.  Using 

this observation, the committee produced two sets of 

worksheets.  One computed the values that began with the 

low seed S1, and moved upwards through S1(O+E), 

S1(O+E)
1
, S1(O+E)

2
, and so on until they reached the 

second seed value S2.  The second set began at S2 and 

moved downward through S2(O-E), S2(O-E)
1
, S1(O-E)

2
.  

 

As (O+E) and (E-O) were different values, this procedure 

produced the same number in two different ways.  Any 

disagreement between the two sets of numbers or any final 

calculation that did not match its final seed would send the 

worksheet back to be recalculated.  

 

Checking Calculations 

Once the worksheets were completed, the Planning 

Committee assembled the final values into the final tables.  

As they did, they subjected the numbers to two kinds of 

tests.  The first was done before the transfer.  The tests in 

this group relied on the mathematical properties of the 

underlying function.  For the exponential function, they 

used two tests.  The first computed weighted sums of 3 

adjacent values.  This value should small in absolute value, 

less than 10
-25

.  The second test used sums of 10 

consecutive values.  These sums should equal a known 

target.   

 

These functional tests not only identified accidental errors, 

they quickly revealed deliberate errors.  Such errors 

appeared from time to time when one of the computers 

would attempt to avoid work by inventing numbers to 

place in the worksheet but would attempt to protect 

themselves by entering a final number that equaled the 

target seed.  In such cases, the functional tests would 

produce values well outside the expected range.  

 

Once the raw calculations were tested they were typed on 

to a mimeographed stencil and tested once again.  If the 

Planning Committee found an error, they would erase the 

bad number with hot wax and retype it.  To check these 

values, they used a general-purpose test that would work 

for all functions and also identify errors of transcription.  

This method was based on the technique of forward 

differences.   

 

These assistants would check the results by computing 

certain values from neighboring numbers.  On the 

exponential table, for example, they employed two such 

tests.  On the first, they computed a weighted sum of three 

adjacent values.  On the second, they computed the sum of 

ten adjacent numbers.  The first value would indicate an 

error if it was bigger than 10
-6

.  The second would indicate 

an error if it did not equal the original value times a known 

constant.  By performing these calculations across different 

groups of adjacent numbers, they could isolate the problem 

calculations.   

 

The Technique of Differencing 

Though human computers regularly used the method of 

differencing to find errors, they left only a scant record of 

its theory and application.  Blanch treated it slightly in her 

book about WPA computational methods. (Blanch 1945)  

In an article that was intended to be the first installment of 

multi-part series on the method, the mathematician J.C.P. 
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Miller noted that the “precise details of [differencing] and 

its pitfalls,” were “never set out fully in print.”(Miller, 

1950)  In spite of this observation, Miller never completed 

any article beyond the first of the series.   

 

The technique of differencing to identify errors was 

replaced to the use of differencing to interpolate a function.  

To look for errors, a member of the Planning Committee 

would compute a series of first differences, which was 

done by computing the difference between any given 

number and the next number in the table.   

 

After computing first differences, the Planning Committee 

would compute second differences by computing a similar 

set of differences from the first differences.  Following this 

process recursively, they would compute a set of third, 

fourth and higher differences.  In general, they computed at 

least fourth order differences.  In many cases they 

computed differences up to the eighth or tenth order 

differences. 

 

To use differences to search for errors, the Planning 

Committee made the assumption that the function was well 

approximated by a polynomial, at least within a small 

range.  Just as the derivatives of a polynomial eventually 

become zero, the high order differences of a polynomial 

will also become zero.  Therefore, the Planning Committee 

expected the high order differences to be within a certain 

narrow band that was centered on zero. (Blanch 1945). 

 

Differencing worked fairly well with functions that were 

not close to polynomials, such as the exponential function, 

or for finding transcription errors.    A difference of order k 

was actually a sum of k computed values that were 

multiplied by the binomial coefficients of order k. As 

binomial coefficients get large quickly as k increases, they 

would ultimately identify an erroneous value by inflating 

its role in some difference and producing large value that 

fell outside the target range.   

 

Miller noted that differences should fall within fixed 

bounds but admitted that he had no fixed rule for 

calculating that range. “The determination of exact 

theoretical probabilities for differences of various sizes is a 

matter of some difficulty.”  He argued that human 

computers could learn how to use the technical of 

differencing “from experience and the examination of 

many tables.”(Miller 1950) In her book, Blanch suggests 

that the Mathematical Tables Project not only used 

differences to identify errors but also to correct errors.  She 

shows how to do this in a few simple settings but never 

develops a general theory. (Blanch 1945) 

 

Lessons for Modern Human Computation 

At this point in their development, human computers are 

not likely to repeat the same kinds of detailed numerical 

computations that were handled by the Mathematical 

Tables Project, or the Coast Survey, or the Connassiance 

des Temps.  At the same time, if human computers 

represent “artificial artificial intelligence”, as they are often 

characterized, then they will be employed in circumstances 

in which they will be making quantitative judgments that 

may be every bit as complicated as the traditional 

numerical computations.  Furthermore, other tasks for 

human computation have useful parallels in these classic 

methods. (von Ahn, 2009) 

 

The history of human computers offers a rich literature that 

could be used not only to recreate the computational 

methods of the 1930s but also provide a basis for error 

identification and correction techniques for modern 

computing groups.  The techniques of the Mathematical 

Tables Project are documented in the prefaces of their 28 

books of tables.  Furthermore, the veterans of the group 

produced the well-circulated Handbook of Mathematical 

Functions, which presents many of the computation 

techniques used by the Mathematical Tables Project 

though only a limited discussion of error correction and 

detection.   

 

A few articles that discuss error detection and correction 

can be found in the periodical Mathematical Tables and 

Other Aids to Computation, which is available on JSTOR.  

One of the leading computers of the age, L. J. Comrie, left 

an important discussion of errors and error detection in an 

index to mathematical tables that was complied by his 

colleagues. (Fletcher, 1946)  Finally, Blanch recorded her 

thoughts on error identification in two manuscripts. 

(Blanch 1945, Blanch undated). 

 

The accomplishments of the early computing groups 

provide four obvious lessons for the modern human 

computation of numerical values.  The most important of 

these lessons is the one that provides a target for all 

calculations done by the human computers.  We should 

never ask human computers to do a calculation unless we 

have prior estimate for that calculation.  We can use that 

estimate to restrict the values that can be entered onto a 

computer screen or to check the final values.   

 

The second lesson suggests that we need to have multiple 

ways of checking for errors, especially if we are looking to 

have highly reliable answers.  We need to have tests that 

are based on specific properties of the underlying functions 

and as well as general methods that can capture many 

varieties of errors.   
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The third lesson addresses Babbage’s Law of Errors and 

suggests that each value be computed at least twice by two 

different methods.  This lesson suggests that human 

computation is going to be much less efficient than 

mechanical calculation.  However, if we have no other 

technique, we will have to tolerate such inefficiencies. 

 

Finally, the last lesson of the old human computing groups 

is the obvious lesson that human computation has to be 

well planned and that we need to identify all possible 

sources of errors and the means of identifying errors.  

When the Mathematical Tables Project prepared its 

computing plans, it generally circulated them to a few 

well-established mathematicians for their comments and 

criticism.  Blanch and the other leaders of the group deeply 

desired to have the approval of the scientific community 

and knew that a poorly prepared table could permanently 

damage their reputation.  From the start, the group was 

dismissed by leaders of the National Academy of Sciences, 

who reasoned that people on work relief could not be 

trusted to be accurate.  Modern human computation could 

suffer the same fate if its leaders do not take the same care 

in preparing its computations.  
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