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Abstract 

Smartphones incorporate many diverse and powerful sen-
sors, which creates exciting new opportunities for data min-
ing and human-computer interaction. In this paper we show 
how standard classification algorithms can use labeled 
smartphone-based accelerometer data to identify the physi-
cal activity a user is performing. Our main focus is on eval-
uating the relative performance of impersonal and personal 
activity recognition models. Our impersonal (i.e., universal) 
models are built using training data from a panel of users 
and are then applied to new users, while our personal mod-
els are built with data from each user and then applied only 
to new data from that user.  Our results indicate that the per-
sonal models perform dramatically better than the imper-
sonal models—even when trained from only a few minutes 
worth of data. These personal models typically even outper-
form hybrid models that utilize both personal and imperson-
al data. These results strongly argue for the construction of 
personal models whenever possible. Our research means 
that we can unobtrusively gain useful knowledge about the 
habits of potentially millions of users. It also means that we 
can facilitate human computer interaction by enabling the 
smartphone to consider context and this can lead to new and 
more effective applications. 

Introduction   
Smartphones and other mobile devices now contain diverse 
and powerful sensors. These sensors include GPS sensors, 
audio sensors (microphones), image sensors (cameras), 
light sensors, direction sensors (compasses), proximity sen-
sors, and acceleration sensors (accelerometers). Because of 
the small size of these “smart” mobile devices, their sub-
stantial computing power, their ability to send and receive 
data, and their nearly ubiquitous use in our society, these 
devices open up exciting new areas for research in data 
mining and human-computer interaction. The goal of our 
WISDM (WIireless Sensor Data Mining) project (Weiss 
2012a) is to explore the research and application issues as-
sociated with mining sensor data from these powerful mo-
bile devices. In this paper we explore the use of the 
smartphone accelerometer sensor to identify the activity a 
user is performing—a task known as activity recognition. 
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We employ a supervised learning approach for address-
ing the activity recognition task. We collect accelerometer 
data from 59 users as they walk, jog, climb stairs, sit, 
stand, and lie down, and then aggregate this raw time series 
data into examples that cover 10 seconds of activity. Each 
example is labeled with the activity that occurred during 
the interval and activity recognition models are induced 
using several standard classification algorithms. We utilize 
Android-based smartphones because the Android operating 
system is free, open-source, easy to program, and is the 
most popular mobile operating system. But the tri-axial 
accelerometers present in Android cell phones are found in 
virtually all new smartphones and smart music players, 
including the iPhone and iPod Touch (Apple 2009), and 
thus the research we describe in this paper could easily be 
applied to other mobile platforms. 

Accelerometers were initially included in smartphones 
to support advanced game play and to enable automatic 
screen rotation. However, they can also support applica-
tions that exploit activity recognition, such as health appli-
cations that monitor a user’s daily activities. Such applica-
tions can help address the health concerns that arise due to 
inactivity (e.g., cardiovascular disease, hypertension, and 
osteoporosis) and can help combat the critical public health 
threat of childhood obesity (Koplan et al. 2005). Given that 
the World Health Organization (2002) maintains that ap-
proximately two million deaths per year can be attributed 
to physical inactivity, such applications are sorely needed. 
The WISDM project is pursuing such a health application 
by developing the Actitracker application (Weiss 2012b). 

Activity recognition can also enable a smartphone to tai-
lor its behavior based on what the user is doing; such con-
text-sensitive applications can automatically forward calls 
to voicemail when a user is exercising or play “upbeat” 
music when a user begins to slow during a daily jog. Ap-
plications like these make human-computer interaction 
transparent by responding to a user's natural activities ra-
ther than requiring conscious interaction with an interface.  

Accelerometer-based activity recognition is not new. In 
fact, numerous activity recognition systems have been de-
veloped, but virtually all of these rely on the use of multi-
ple accelerometers strapped to the subject’s extremities. 
Our work differs from this in that we rely on a commercial 
mass-marketed device rather than specialized hardware, 
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and we use a single device, conveniently located in the 
user’s pocket, rather than multiple devices distributed 
across the body. Thus our activity recognition work can 
readily be deployed on a wide scale. But in this paper we 
make another key contribution, by comparing and analyz-
ing the performance of personal and impersonal activity 
recognition models. Personal models are generated for spe-
cific users by having a sample of labeled activity data for 
the user, while universal/impersonal models are built from 
a collection of users and then applied to new users. As our 
results will show, personal models dramatically outperform 
impersonal models—even though they are built using vast-
ly less data. No existing smartphone-based system per-
forms this type of comparison in a comprehensive manner. 
The accuracy and portability of activity recognition models 
are critical concerns for activity representation systems that 
are built using these models. 

The Activity Recognition Task 
The activity recognition task involves mapping time-series 
accelerometer data to a single physical user activity. In this 
paper we formulate this into a standard classification prob-
lem by aggregating the time-series data into examples. We 
consider six common activities that collectively cover 
much of the time in a typical user’s day: walking, jogging, 
stair climbing (up and down), sitting, standing and lying 
down. We assume the smartphone is in the user’s pocket, 
but in the future will consider belt-worn smartphones. The 
axes associated with the smartphone are aligned as indicat-
ed in Fig. 1. The accelerometer measures the acceleration 
due to gravity, about 9.8m/s2, and this is incorporated into 
the y-axis values for activities where the user (or at least 
the phone) is upright. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.   Modern smartphone accelerometers are tri-axial. The 
figure shows the axes of motion relative to the user, assuming the 
phone is in the user’s pocket.  

The six activities that we recognize include three static 
activities (standing, sitting, and lying down) and three dy-
namic activities (walking, jogging and stair climbing). Fig. 
2 displays the accelerometer graph for the standing activi-
ty. Due to space limitations, the graphs for sitting and lying 
down are not shown, but for those two static activities 

gravity no longer aligns with the y-axis and so the y-axis 
values no longer dominate. 

 
Figure 2.  The acceleromer graph for standing shows that gravity 
aligns with the y-axis. 

Fig. 3 displays sample accelerometer data for walking, 
jogging, and stair climbing. All exhibit periodic behavior. 

 
(a) Walking 

 
(b) Jogging 

 
(c) Stairs (Ascending) 

Figure 3.  Acceleromter graphs for three dynamic activities. 
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Experiment Methodology 
In this section we describe the methodology for generating 
the activity recognition models. We discuss the data collec-
tion procedures, the method for transforming the accel-
erometer data into examples, and the model induction pro-
cess. We also describe the methodology for generating and 
evaluating the personal, impersonal, and hybrid models. 

Data Collection 
We collected data by having 59 users carry an Android-
based smartphone in their pocket while performing the six 
everyday activities mentioned previously. The data collec-
tion process is controlled by our sensor collection “app,” 
which is available from the Android Marketplace. Our re-
search team members directed the participants to perform 
the various activities and input the activity labels into the 
app. The sensor data is stored on the phone and also trans-
mitted to our server. For this study we sampled the accel-
erometer 20 times per second. Fifteen different Android 
smartphone models were used to collect the data, running 
Android OS versions from 1.5 to 2.3. The accelerometers 
on all of these phones were observed to operate similarly. 

Data Transformation 
Standard classification algorithms cannot directly handle 
time-series data, so we first transform the raw accelerome-
ter data into examples (Weiss and Hirsh 1998). To accom-
plish this each example summarizes 10 seconds of data 
(this time is sufficient to capture several repetitions of pe-
riodic motions and was empirically shown to perform 
well). Given 20 samples per second and 3 axes, this yields 
600 accelerometer values per example. We then use the 
following 6 basic features to generate 43 features from 
these raw values (the number of features generated for each 
feature-type is noted in brackets): 

� Average[3]: Average acceleration (per axis) 
� Standard Deviation[3]: Standard deviation (per axis) 
� Average Absolute Difference[3]: Average absolute 

difference between the value of each of the 200 val-
ues in an example and their mean (per axis) 

� Average Resultant Acceleration[1]: Average of the 
square roots of the sum of the values of each axis 
squared √(xi

2 + yi
2 + zi

2) over the example 
� Binned Distribution[30]: The fraction of the 200 

values that fall within each of 10 equally spaced 
bins, spanning the range of values (per axis).  

� Frequency[3]: the frequency of the periodic wave 
associated with repetitive activities (per axis) 

The frequency feature uses a heuristic method to identify 
all of the clearly distinct peaks in the wave and then calcu-
lates the average time between successive peaks. For sam-

ples where at least three peaks cannot be found, a special 
null value is used.  

Table 1 shows the number and distribution of the trans-
formed examples, per activity. Walking is the most com-
mon activity. The time spent jogging and stair climbing 
had to be limited because they are so strenuous, and we 
limited the time spent on the static activities because they 
were found to be easy to identify. 

Walk Jog Stair Sit Stand Lie Total 
Total 3397 1948 1549 1143 689 565 9291 

% 36.6 21.0 16.7 12.3 7.4 6.1 100 

Table 1. The number of examples per activity over the entire data 
set, collected from 59 users. 

Model Induction and Experiments 
Our activity recognition models are induced from the la-
beled examples using the following WEKA (Witten and 
Frank 2005) classification algorithms: decision trees (J48 
and Random Forest, RF), instance-based learning (IBk), 
neural networks (Multilayer Perceptron, NN), rule induc-
tion (J-Rip), Naïve Bayes (NB), Voting Feature Intervals 
(VFI), and Logistic Regression (LR). Default settings are 
used for all learning methods except NB, where kernel 
estimation is enabled, and IBk, where we set k=3 (IB3) so 
we use 3 nearest neighbors, rather than the default of 1. 

In our research we induce three types of models: imper-
sonal, personal, and hybrid. Each model addresses a slight-
ly different learning problem and makes different assump-
tions about how the model will be applied. The type of 
model impacts how we partition the data into training and 
test data. The different models are described below: 

� Impersonal Models: these models are generated using 
training data from a panel of users that will not sub-
sequently use the model (thus the training and test 
sets will have no common users). These models can 
be applied to a new user without requiring additional 
labeled training data or model regeneration. 

� Personal Models: these models are generated using 
labeled training data from only the user for whom the 
model is intended. These models require a training 
phase to collect labeled data from each user. The 
training and test data come from the same (and only) 
user, but will contain distinct examples.  

� Hybrid Models: these models are a mixture of the 
impersonal and personal models. The training data 
will have data from the test subject and from other 
users. Thus the training and test set will have over-
lapping sets of users (but distinct examples).  

Impersonal models have the advantage that they can be 
built once for all users and can include data from many 
users for training purposes. These models can be viewed as 
universal models, although technically they should only be 

100



used for users not in the training set. Personal models have 
the advantage that they may match the idiosyncrasies of 
the intended user, but require each user to provide training 
data; they will also have to rely on limited data from a sin-
gle user. The hybrid model, like the personal model, re-
quires training data and model generation for each user, but 
can potentially outperform the personal model because it 
makes additional training data available (from other users). 

The experiments associated with each model vary in 
how they are set up. For impersonal models data from 58 
users is placed into the training set and data from 1 user is 
placed into the test set. This process is repeated 59 times, 
which allows us to generate reliable performance metrics 
and also easily characterize the performance on a per-user 
basis. For personal models, 10-fold cross validation is ap-
plied to each user’s data and thus 590 (59 × 10) personal 
models are evaluated. Since each user has a very limited 
amount of data (on average 160 examples), 10-fold cross 
validation is essential. The confusion matrices that are 
generated from both of these types of models are created 
by summing the counts in each cell over all 59 runs. The 
setup for the hybrid models is much simpler, since we just 
place all of the user data into a single file and then use 10-
fold cross validation. Thus, in this case the training and test 
set have overlapping sets of users. 

Results 
The predictive accuracy associated with the personal, hy-
brid, and impersonal models, for each of the eight classifi-
cation algorithms, is displayed in Table 2. Those activities 
that occur more frequently have a greater impact on per-
formance. These results make it quite clear that for every 
classification algorithm the personal models perform best, 
the hybrid models perform second best, and the impersonal 
models perform worst. Furthermore, the personal models 
always achieve a very high level of accuracy and perform 
dramatically better than the impersonal models. While this 
result is easy to justify, since different people may move 
differently, the result is far from obvious, since the person-
al models are trained from dramatically less data—and, in 
an absolute sense, from a small amount of data (i.e., an 
average of 0.9�160=144 examples). 

RF NB LR IB3 NN J48 VFI J-Rip 
Personal 98.4 97.6 97.7 98.3 98.7 96.5 96.6 95.1 
Hybrid 95.0 82.8 84.6 96.5 92.1 91.8 76.0 91.1 
Impersonal 75.9 74.5 72.7 68.4 67.8 69.1 68.3 70.2 
Average 89.8 85.0 85.0 87.7 86.2 85.8 80.3 85.5 

Table 2. Predictive accuracy of the activity recognition task. 

The hybrid models typically perform closer to the per-
sonal models than the impersonal models. We were greatly 
surprised by this because even though the hybrid models 
evaluate performance on users that are in the training set, 
we did not think it could really exploit the data from just 

one of the 59 users. These results clearly show that this is 
not true, and that the good performance of the hybrid mod-
els is due to the ability to focus on and exploit a small frac-
tion of the training data (on average 1/59). This means that 
the classification algorithms can effectively identify the 
movement patterns of a particular user from among a host 
of users. In retrospect this is not surprising, since recent 
work by our research group demonstrated that biometric 
models induced from accelerometer data can identify a 
user from a set of users with near perfect accuracy 
(Kwapisz, Weiss, and Moore 2010a). Because the hybrid 
model performs more poorly than the personal model, but 
still requires the acquisition of labeled training data from 
each user, we see little reason to use the hybrid model—
except possibly in cases where one has only a tiny amount 
of personal data (we will evaluate this in the future). 

Our main focus is on the comparative performance of 
the three types of models, but our results suggest which 
classification methods may be best suited to activity recog-
nition, given our formulation of the problem. For personal 
models, NN does best, although RF and IB3 also perform 
competitively. For impersonal models, RF does best. 

Table 3 shows the activity recognition performance for 
the personal and impersonal models for each activity, and 
for three best-performing classification algorithms and a 
“baseline” strategy. The baseline strategy always predicts 
the specified activity, or, when assessing overall perfor-
mance, the most common activity. The personal models 
outperform the impersonal models for every activity, usu-
ally by a substantial amount, although impersonal models 
still outperform the baseline strategy. 

 

% of Records Correctly Classified 
Personal Impersonal Base- 

line IB3 RF NN IB3 RF NN 
Walking 99.1 98.9 99.0 65.2 73.0 56.8 36.6 
Jogging 99.5 99.6 99.8 89.0 95.2 92.1 21.0 
Stairs 96.4 96.8 98.0 65.1 61.5 68.0 16.7 
Sitting 98.2 98.7 98.1 67.6 81.5 66.7 12.3 
Standing 96.4 97.8 97.5 75.2 91.9 88.0 7.4 
Lying Down 95.9 95.0 97.5 34.0 45.1 45.5 6.1 
Overall 98.3 98.4 98.7 68.4 75.9 67.8 36.6 

Table 3. Predictive accuracy on a per-activity basis. 

Table 4 provides the confusion matrices associated with 
the Random Forest learner for the impersonal and personal 
models. We begin our analysis with the impersonal models 
since they have the most errors. The results in Table 4a 
indicate that {walking, stairs} and {lying down, sitting} 
are the two sets of activities most often confused. The con-
fusion between walking and stairs may be due to the simi-
lar time between steps and exacerbated by the differences 
that people have when performing each of these activities. 
It is easy to see how lying down and sitting can be con-
fused, since the orientation of one’s pocket will be at a 
similar angle in both cases. While the results for personal 
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models in Table 4b show that these two sets of activities 
are still confused most, the frequency of such errors is re-
duced by more than a factor of 10. This indicates that it is 
possible to learn the user-specific differences in these two 
sets of activities—and that these differences are not the 
same for all people. This is a key lesson for activity recog-
nition and an argument for the use of personal models. 

 
Predicted Class 

Walk Jog Stairs Sit Stand Lie 

A
ct

ua
l C

la
ss

 Walking 2480 66 819 22 8 2 
Jogging 51 1854 41 1 0 1 
Stairs 518 69 953 2 4 3 
Sitting 7 5 3 931 19 178 
Standing 3 0 12 19 633 22 
Lying down 7 0 5 284 14 255 

(a) Impersonal 

 
Predicted Class 

Walk Jog Stairs Sit Stand Lie 

A
ct

ua
l C

la
ss

 Walking 3359 3 30 1 3 1 
Jogging 5 1940 3 0 0 0 
Stairs 40 5 1500 2 2 0 
Sitting 3 0 1 1128 2 9 
Standing 5 0 8 2 674 0 
Lying down 3 2 4 18 1 537 

(b) Personal 
Table 4. Confusion matrices for random forest (RF) algorithm. 

The results presented thus far are averages over all users. 
However, it is informative to see how activity recognition 
performance varies between users. Fig. 4 provides this in-
formation for the personal models and shows that these 
models perform consistently well for almost all users. The 
minor outliers that do show poor performance are primarily 
due to the high levels of class imbalance in those user’s 
data. For example, the user with the second highest error 
rate has 59 examples of walking data but only between 5 
and 8 examples each for stairs, sitting, standing, and lying 
down. The user with the worst accuracy had a similar class 
distribution, but also had a leg injury. Thus, the few prob-
lems that do occur for the personal models appear to be 
due to high levels of class imbalance or due to an injury. 

 
Figure 4.  Per-user accuracy for personal models. 

Fig. 5 shows a much broader distribution of performance 
for the impersonal models. There are still some users with 

classification accuracies in the 95-100% range, but there 
are many users with extremely poor performance. Our 
analysis showed that most of these poor-performing users 
performed quite well when using personal models. This 
provides clear evidence that there are many users who 
move differently from other users, which “confuses” the 
impersonal models—but not the personal models, which 
can learn how a specific user moves. 

 
Figure 5.  Per-user accuracy for impersonal models 

As part of our data collection protocol, we collect infor-
mation about the physical characteristics of each user 
(height, weight, sex, shoe size, etc.). We analyzed this in-
formation to determine if people with particular or extreme 
characteristics are especially hard to predict when using the 
impersonal models, but, partly due to the limited number 
of users, we could find only suggestive patterns. For ex-
ample, of the ten users that were hardest to predict using 
the RF impersonal models, three were among the oldest 
users in the study. In the future we plan to collect data 
from substantially more users—and diverse users—so that 
we can better assess the impact of such factors. 

The success of the personal models encourages us to 
provide a self-training interface so that users can generate 
labeled training data themselves. We have already done 
this to a great extent and this has greatly reduced the work-
load for our researchers. In the near future we will also 
allow users to automatically generate their own personal 
models. But this is not to say that the performance of the 
impersonal models is inadequate for all applications. For 
example, although the predictions for each individual 10-
second interval may be relatively poor, we still may be 
able to accurately quantify the time spent on each activity 
over a long period of time. 

Related Work 
Activity recognition has recently garnered significant at-
tention due to the availability of accelerometers in con-
sumer products. But activity recognition has been an active 
research topic for many years. Early work employed mul-
tiple accelerometers positioned across the user’s body. One 
well-known study used five biaxial accelerometers to iden-
tify 20 activities (Bao and Intille 2004). That study deter-
mined that the accelerometer placed on the thigh was most 
powerful for distinguishing between activities—a fortunate 
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finding given that smartphones are often stored in a user’s 
pocket. Another study (Krishman et al. 2008), used two 
accelerometers and claimed that a single thigh accelerome-
ter is insufficient for classifying activities such as sitting, 
lying down, walking, and running—a claim our research 
refutes. A study by Tapia et al. (2007) used five accel-
erometers to identify thirty gymnasium activities while yet 
another used three accelerometers to identify seven lower 
body activities (Krishman and Panchanathan 2008). While 
the systems described in these papers are capable of identi-
fying a wide range of activities with good accuracy, they 
cannot be used for mainstream applications due to their 
reliance on multiple special-purpose accelerometers. These 
studies also involved relatively few participants. 

Some studies have used other sensors in conjunction 
with an accelerometer to perform activity recognition, in-
cluding: a heart monitor (Tapia et al. 2007), a light sensor 
(Maurer et al. 2006), and an image sensor worn at the waist 
(Cho et al. 2008). Smartphones can support such multi-
sensor approaches, and we plan to exploit this in the future. 

Several activity recognition systems have incorporated 
smartphones, but only as a storage device (Gyorbiro et al. 
2008; Ravi et al. 2005). Other systems have used commer-
cial mobile devices as the primary component of an activi-
ty recognition system. One effort explored the use of a 
variety of smartphone sensors (microphone, accelerometer, 
GPS, and camera) for activity recognition and mobile so-
cial networking applications (Miluzzo et al. 2008). An ac-
tivity recognition system using the Nokia N95 phone to 
distinguish between sitting, standing, walking, running, 
driving, and bicycling was able to achieve relatively high 
activity recognition accuracy, but did not consider stair 
climbing and only involved four users (Yang 2009). An-
other effort also used the Nokia N95 phone to recognize 
six user activities, but only evaluated personalized models 
(Brezmes et al. 2009), while another smartphone-based 
system only evaluated hybrid models (Kwapisz, Weiss, 
and Moore, 2010b). Khan et al. (2010) achieved 96% accu-
racy on the same activities evaluating smartphone data 
from diverse body locations, but the study only included 6 
users and the methodology does not provide enough infor-
mation to determine the model type. 

There has been relatively little comparative analysis of 
the different types of activity recognition models. Most 
studies, like the following, analyze only one type of model: 
impersonal models (Brezmes et al. 2009; Gyorbiro et al. 
2008; Ravi et al. 2005), personal models (Miluzzo et al. 
2008; Yang 2009), and hybrid models (Kwapisz, Weiss, 
and Moore, 2010b). Two studies did compare personal and 
impersonal models, but neither of these used a smartphone 
and both employed five accelerometers—thus any conclu-
sions would not necessarily apply to a smartphone-based 
system. The first of these studies concluded that imperson-
al models always outperform personal ones, due to the ad-
ditional training data; it further showed that when the im-
personal and personal training set sizes are equalized, per-

sonal models only slightly outperform impersonal ones 
(Bao and Intille 2004). Our results clearly and dramatically 
contradict this result (but for smartphone-based systems).  
In the second study the personal models outperform the 
impersonal models—but there is virtually no analysis or 
discussion of this—as the paper focuses on other issues 
(Tapia et al. 2007).  Thus our paper is the most compre-
hensive study on the impact of model-type on activity 
recognition—especially as it relates to smartphone-based 
systems. Furthermore, we additionally evaluate hybrid 
models and include many more users in our study than 
prior studies, leading to more general and reliable results. 

Activity recognition is a key field in human-computer 
interaction, particularly when mobile devices are involved. 
Even before smartphones came equipped with sensors, 
researchers strapped sensors to these mobile devices to 
support context awareness (Hinckley et al. 2000) and to 
allow them to respond to basic context, such as orientation, 
by rotating the display. Schmidt (2000) proposed that im-
plicit interaction would be the next big shift in human-
computer interaction because it would further reduce the 
human overhead of handling the interface. Activity recog-
nition, including the type described in this paper, complete-
ly eliminates this human overhead by allowing devices to 
respond to a user without any explicit input. 

Conclusion and Future Work 
In this paper we describe and evaluate a machine learning 
approach for implementing activity recognition, in an un-
obtrusive manner, using only a smartphone. We demon-
strate that nearly perfect results can be achieved if a per-
sonalized model is constructed, even using only a small 
amount of user-specific training data. We further show that 
impersonal models perform much more poorly than per-
sonal models. An analysis of the data shows that imperson-
al models cannot effectively distinguish between certain 
activities, and further, that this is largely due to impersonal 
models performing horrendously on some users. Personal 
models can easily handle the problematic users in almost 
every case. We also evaluate hybrid models and show that 
their performance is closer to that of personal models than 
impersonal models—but since hybrid models require user-
specific training data, one may as well just use personal 
models instead. This is the first such study to provide a 
careful analysis of these different models/learning scenari-
os, and we view this as a key contribution of the paper. 
This work should greatly influence the design of future 
activity recognition systems and the higher level activity 
representation systems which rely on them. 

We plan to extend our activity recognition work in sev-
eral ways. We plan to cover additional activities and to 
utilize additional sensors (e.g., GPS). We continue to col-
lect data and thus will add many more users to our study. 
We also plan to incorporate physical characteristics (e.g., 
height, weight, sex) into our activity recognition models 
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and expect that this will improve the performance of all of 
our models—but especially the impersonal models by 
“personalizing” them with relatively easy to obtain infor-
mation. We also plan to analyze those users who perform 
very poorly with impersonal models to gain a better under-
standing of why they fare so poorly—and if this can be 
remedied. We also plan to collect data from users over a 
period of days, weeks, and months in order to determine 
how their movement patterns change over time (currently 
personal models are evaluated on data from within the 
same training session). 

One of our main goals is to make our activity recogni-
tion work available to smartphone users and researchers, 
via a downloadable app. We have been working on this for 
over a year and this effort is now progressing quickly with 
the support of NSF grant 1116124. The Actitracker system 
we are building will track a user’s activities and provide 
reports via a secure account and web interface. This appli-
cation will help people ensure that they and their children 
are sufficiently active to maintain good health, and, as not-
ed in the introduction, this can help improve and save lives, 
given the number of conditions and diseases associated 
with physical inactivity. The system will also include the 
ability to collect one’s own labeled training data and gen-
erate a personalized activity recognition model. Such a 
system will hopefully stimulate further advances in activity 
recognition and highlight the importance of personal ac-
tivity recognition models. An early version of this system 
is currently being tested for deployment. 
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