

Inference of User Context from GPS Logs for

Proactive Recommender Systems

Benjamin Lerchenmueller, Wolfgang Woerndl
Technische Universitaet Muenchen, Germany

{lerchenm, woerndl}@in.tum.de

Abstract
With the increasing popularity of smartphones, the wide
availability of mobile Internet and the higher computational
power of mobile devices, new types of applications are now
possible. It is important to provide a smooth user experience
by facilitating the interaction with the device. To do so, the
goal of the work is support proactive recommendations on
the mobile device. In order to determine the best point in
time for a recommendation, various context information
needs to be taken into account. One interesting aspect is
determining the current user activity, e.g. whether the user is
walking or not. In this paper, we present an algorithm that
runs online on a smartphone and analyzes the user activity
based on GPS data.

Introduction
In the past decade, recommender systems have become
very popular, which led to wide variety of available
system. In this work, we examine the comparatively new
approach of proactive recommender systems (Ricci 2011).

Motivation
Traditional recommender systems follow a request-
response pattern that requires the user to express the desire
for a recommendation. A contrary approach is taken in this
work in order to enable a smoother user experience: the
system automatically provides recommendations that may
be appropriate in a given situation. In such a proactive
recommender system, the system generates
recommendations and notifies the user about it without any
explicit user request (Woerndl et. al. 2011). For the
decision whether a recommendation would be appropriate
or not, the current user context has to be assessed. One
important aspect is the knowledge about the user’s current
activity.

Copyright © 201 , Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Target Scenario and Goal
The following description of the target scenario was the
driving idea behind this work: A tourist is walking through
a foreign city doing some sightseeing. After quite some
time of discovering the city by foot, the user’s smartphone
suggests to take a break at a recommendable coffee shop
close-by.

The key property of a proactive recommender system is
delivering the best recommendations at the right point. The
question of finding the best item(s) has already gained a lot
of attention in prior research and thus, various well-
working systems for retrieving good recommendations
exist. However, figuring out the best point in time for a
recommendation has not been deeply examined yet.
Therefore, determination when to generate a
recommendation and present it to the user is the goal of
this research project. A important information needed in
the target scenario is knowing whether the user is walking
or not, because it might have crucial influence on the need
for a break and also on the interruptability of the user. The
aim of this paper is to present an algorithm that can run on
current smartphone and provides this classification in real-
time.

Outline
In the next section, important background information on
proactive recommender systems will be given before
presenting related work. The section Inferring User
Activity will provide deep information about the developed
algorithm and a needed logging framework. Subsequently,
we describe the acquisition of test data and the evaluation
before concluding the paper with a short summary.

Background

Proactive Recommender Systems
As mentioned above, the field of proactive recommender
systems did not yet experience a lot of attention in

2

72

Activity Context Representation: Techniques and Languages
AAAI Technical Report WS-12-05

research. Determining of the best point in time for a
recommendation is a non-trivial and an important part of a
proactive recommender system. If the recommendation is
given at the wrong situation the user might be disrupted or
annoyed which might lead to refusal of the system.

In our earlier work, we developed a two-phase model to
handle proactivity in mobile recommender systems based
on the current context (Woerndl et. al. 2011). In the first
phase, the system determines whether or not the current
situation warrants a recommendation. This calculation is
based on several context categories that are explained in
the next paragraph. The second phase deals with evaluating
the candidate items. If one or more items are considered
good enough in the current context in the second phase, the
recommender system communicates it to the user. The first
phase is executed periodically in the background. The
second phase is only executed when the first phase
indicates a promising situation and the corresponding score
exceeds a threshold. We have also worked on investigating
the user interface and acceptance of proactive
recommendations on smartphones (Gallego Vico, Woerndl
and Bader 2011), but this study is out of the scope of this
paper.

Context can be defined as characterizing the situation of
entities that are relevant to the interaction between a user
and an application (Dey, Abowd and Salber 2001). When
assessing the current situation in the first phase of our
model, we are utilizing the following four context
categories: 1. User context, e.g. the current activity of the
user such as "walking" as inferred from sensor data, but
also the state of the mobile device, e.g. "flight mode", 2.
Temporal context, e.g. current time, 3. Geographic context,
e.g. distance to available points of interest, and 4. Social
context, e.g. whether the user is alone or not.

The attributes in the context categories are modeled as
simple attribute-value pairs but more complex options (see
Strang and Linnhoff-Popien, 2004, for example) are
possible. The main requirement is that the context
attributes can be analyzed in real-time on the mobile
device.
 In this paper, we are focusing on the user context. For
this context category, various information available on
current smartphones can be taken into account. We
developed a three-component scheme for describing and
evaluating the different features of user context. At a given
point, each component is evaluated leading to three scores.
These scores are combined to yield a global user context
score indicating the appropriateness of a recommendation
for the given situation based on the user context.
 The first component of user context is given by the user
status. It encapsulates features describing the state of the
user, like the telephony state, the presence of calendar
entries etc. The device status constitutes the second
component and is structurally very similar to the user

status, but incorporates different features, for instance the
state of connectivity. Both components capture the
encapsulated features and calculate the recommendation
score based on the following idea. For each feature, a value
indicating its weight w exists. Furthermore, every feature
value has an appropriateness factor that shows how
appropriate a recommendation would be for this feature
value. The needed values for the weights and
appropriateness factors have been determined by an online
user study (Lerchenmueller 2012).

The third and most interesting component in the context
of this paper is the user activity. As described earlier, the
classification if the user is walking or not is the desired
information for the target scenario. In contrast to the other
two components, this constitutes a binary value. But as
described above, the outcome of each component of the
context model is a concrete recommendation score. In
order to achieve this, the duration of the user activity is
taken into account in case that he / she is walking, leading
to the formula RSActivity= log(d), where d is the duration in
minutes if duration > 1 or otherwise d = 1.
 Based on the recommendation scores of the three
respective components, the global user context score can
be calculated by linearly combining the single values
allowing for different weights, for example. The resulting
recommendation score indicates how appropriate a
recommendation at the current time is, based on the current
user context. This information can then be used together
with other context information in the first phase of the two-
phase proactivity model to decide whether to generate a
recommendation or not.

Related Work
As this paper focuses on the inference of the user activity
as part of the context model, only prior research
considering activity classification will be briefly
summarized in this section. A recent overview can be
found in (Ye, Dobson and McKeefer 2012).
 (Kwapisz, Weiss and Moore 2011) use the
accelerometer of Android smartphones to collect data
about the user activity and infer the type of the activity
afterwards. Similar approaches have been taken before, for
instance in (Parkka et. al. 2006) where multiple dedicated
accelerometers where attached to test persons. Although
the accelerometer allows for pretty good activity
classification, it can be hardly used in an online application
as the update rate is very high and usually pre-processing
of the data is necessary. Thus, the global positioning
system (GPS), which typically does not require complex
pre-processing, will be used for the algorithm in this paper.
(Zheng et. al. 2010) presented an approach that only relies
on collected GPS data to distinguish various types of user
activity. In a first step, a recorded GPS track is divided into

73

walking and non-walking points based on upper thresholds
for the velocity and acceleration. Next, the points are
grouped into walking and non-walking segments.
Afterwards, various data mining techniques are applied to
the non-walking segments to further refine the activity
classification.

Inferring User Activity
The related approaches briefly mentioned in the last
section, have one important property in common: the user
activity is inferred from the collected data offline on an
ordinary computer and not on the mobile device. That
allows using complex and computationally intense data
mining techniques. In our scenario, the algorithm has to
run online, i.e. provide results in real-time, on smartphones
with limited resources. One important advantage of this
approach is that the collected user data remains on the
mobile device under the control of the user, which
improves privacy. Nevertheless, (Zheng et. al. 2010)
provides an interesting approach as they only relied on
GPS data. The following description of our developed
algorithm will show that their work partially served as a
foundation for our approach.

General Idea
As user activity is one part of the user context, its inference
follows the same principles as context inference in general.
First, raw data needs to be captured by sensors, which can
be real hardware sensors but also software sensors. Such
information is referred to as the low-level context. In order
to make use of the context, usually a more abstract view is
needed: high-level context. Considering the user activity,
the received raw GPS position can be seen as the low-level
context. Knowing that the user is “walking” constitutes the
high-level context. In order to infer the high-level context,
the captured raw data typically needs to be pre-processed.
As already mentioned, data delivered by the device’s
positioning system can be used without a lot of pre-
processing. In how far this step was necessary in our
approach will be discussed in the next section. After the
pre-processing, the data needs to be interpreted to infer the
high-level context. This typically involves various data
mining techniques. Furthermore, information from
different sources can be combined. After having inferred
the high-level context, the final step is to use or apply the
context information. In the target scenario, the overall user
context score is used to decide whether a recommendation
is appropriate or not, as explained above. The user activity
is one part of the information that forms the high-level user
context. As all steps need to be performed on a smartphone
the mobile device, the limited resources of the mobile

device have to be taken into account. This relates to
computational power as well as to battery life.

Like all current mobile operating system, Android
provides access to the device’s positioning system via an
API. In addition to the GPS, the determination of the
position can also be done via WiFi or cell tower
triangulation. Although these methods are usually less
accurate than GPS, they might be very helpful in areas
where the availability of GPS is not guaranteed, such as
inside building or parts of big cities. Therefore, the entire
device’s positioning capabilities are used to achieve best
results for our application.

Activity Classification Algorithm
As motivated above, the goal of the activity classification
algorithm is to find out whether the user us walking or not.
In order to classify the current user activity, the algorithm
needs to receive updates about the user’s position in terms
of a point described by latitude and longitude on a regular
basis. Starting with the second point, the following steps
are executed.

1. Filtering

GPS data typically does not require pre-processing.
However, in contrast to (Zheng et. al. 2010) we apply this
step before doing the actual classification. To put it more
precisely, filtering is performed to remove invalid points.
Such outliers can result from inexact GPS measurements.
Filtering out these points has two advantages:
computational effort can be saved and the classification
described in step 2 is more accurate.

The process of filtering includes the extraction of
features. First, a point’s accuracy, which is delivered by the
positioning system, is considered. If it lies above a certain
threshold, the point is filtered out and the next one is
examined. Otherwise, the calculation of features is started:
distance to the previous point, time difference to previous
point, velocity and acceleration. After the calculation of
each feature value, the algorithm executes a filter. For
example, if the distance between two consecutive points is
zero, the point is discarded. Otherwise, the velocity is
calculated. If the resulting value lies above a certain
threshold the point is again filtered out etc. Thresholds for
the filtering were heuristically assigned after some initial
tests, while other values were adopted from the work of
(Zheng et al. 2010). As mentioned above, such invalid
points can occur due to measurement errors and result in
unrealistic high values for the velocity.
 In addition to these rather simple filtering approaches,
the point’s (Pi) neighborhood is taken into account, i.e. the
previous point (Pi-1) and the next point (Pi+1). A simple
heuristic is then applied to filter out points that follow the

74

typical outlier pattern of GPS points (Figure 1): if the
distance between Pi-1 and Pi+1 is smaller than the distance
between Pi and Pi+1 the point Pi is considered as an outlier.
The consideration of the point’s neighborhood introduces
the need for knowing the next point. Therefore, not only
the previous point must be remembered, but also the point
in question needs to be saved and can not be examined,
before the next point is available. Consequently, the
algorithm works with a delay of one point and is thus
dubbed quasi real-time.

2. Point-based Classification

When a point is considered as valid, i.e. it is not filtered
out, the point-based classification is executed. This is
similar to (Zheng et. al. 2010), but is executed in real-time
in our case. If the point’s velocity exceeds a threshold WTv
or it’s acceleration is above a value WTa, the point is
considered as a “non-walking” point. Otherwise it will be
seen as “walking” point. At first sight, such a classification
might seem sufficient. However, there are some aspects
that must not be neglected. If you look at each point
separately and only base the classification upon the values
for velocity and acceleration, a frequent alternation might
occur. Even if the user is walking, points with values that
lie above the thresholds can be delivered by the positioning
system due to inexact measurements. In our use case, such
an alternation is very impractical, as a certain continuity is
needed in order to make a statement about the duration of
the current activity.

3. Segment-based Classification

To overcome these drawbacks, we apply a segment-based
classification. Our approach is different from the one of
(Zheng et. al. 2010) concerning the initial classification
and the number of segments. Each segment has two
properties: the classification (not classified | walking | non-
walking) and the state (certain | uncertain). In our case, at
most two segments can exist and only one can have the
state “certain”. As in (Zheng et. al. 2010), we are interested
in segmenting a whole recorded track afterwards, the
number of possible segments is arbitrary. Furthermore, the
classification “not classified” does not exist in their
approach. The following paragraphs will illustrate the idea
behind the algorithm.

The initial segment is deemed as “uncertain” and “not
classified”. Each point received after the point-based
classification is included in the segment. This means that
the segment keeps track of the covered distance and the
number of included “walking” and “non-walking” points.
If the distance and the number of included points both
exceed certain thresholds, the certainty of the segment is
evaluated. In the simplest and most successful approach,
this is done by comparing the number of included
“walking” points against the “non-walking” ones. The
classification of the majority is then taken as the
classification for the segment, whose state is changed to
certain at the same time then.

Now that a certain segment exists, the classification of a
new point is compared to the classification of the segment.
If it matches, the point is included into the segment.
Otherwise, the segment becomes the oldCertainSegment
and a new uncertain segment with the point’s classification
is created. Nevertheless, the global classification of the
current activity is still given by the oldCertainSegment. If
the next point’s classification matches the one of the new
segment, it is included. This continues until enough points
are included in the new segment and a long enough
distance has been covered to deem it as certain. In this
case, the oldCertainSegment is discarded. If in contrast, the
new segment is still uncertain and a point arrives, whose
classification matches the one of the oldCertainSegment
and not the new one, the information from the uncertain
segment as well as the new point are included in the
oldCertainSegment. Subsequently, the oldCertainSegment
becomes the only segment again, as the new one is
discarded.

 The use of two segments and the fact that certainty is not
lost right away when a point with a different classification
arrives, helps to overcome the problem of having to deal
with frequently changing activity classifications. It
introduces exactly the continuity needed for our use case.
One resulting possible drawback might be a delay in the
recognition of real changes in the activity. If the user
changes from “walking” to “cycling”, for instance, the
algorithm might require some time until the new activity is
correctly recognized. To what extent this is a problem will
be discussed in the section Evaluation.

Logging and Classification Framework
In order to test the algorithm, test data was required. For
this purpose, we have developed a framework and an
application for logging labeled GPS data (and other
information) on the Android system. The application
provides a simple user interface for starting and stopping
the logging process and selecting the current activity.

For the testing of the algorithm, we developed a program
that reads the logged position information and gives the

Figure 1: Typical GPS outlier pattern

75

recorded points sequentially to a classification engine that
executes the algorithm described above. The given point-
based as well as the segment-based classification are then
compared to the ground truth, i.e. the user given label. In
addition to the classification, this tool also examines timing
aspects to analyze the real-time properties.

Evaluation

This section first explains how test data was acquired and
then discusses the results of the evaluation.

Setup
For the acquisition of test data, a group of twelve people of
mixed gender was equipped with the Android application
described at the end of the previous section. Seven
participants did not own an Android smartphone
themselves and were provided with test devices. Our
system does not need special requirements concerning the
hardware. The one requirement was to run at least version
2.3.3 of the Android system to guarantee correct
operability. In total, four different types of devices were
used. This was a good way of verifying if the logging
software, and thus also the access of the positioning
system, works as desired on different devices. Equipped
with devices and software, participants were asked to track
and label their activity for a duration of 10 to 14 days.
During this time, the participants were asked to collect as
much position data as possible and go for a walk of a
minimum duration of 30 minutes at least three times.

 After the user study has been conducted, the logged
information was collected from all the devices. The total
number of logged points and given labels (annotations) is
shown in Table 1. Since test users were instructed to
activate the logging mostly when they were moving
around, the amount of “no move” points in Table 1 is
rather low.

Based on the collected data, the filtering mechanism was
examined first. The results showed that filtering should be
applied, as a lot of outliers were present in the recorded
data. Manual inspection considering also the resulting
values for velocity and acceleration showed that the
filtered data was much more realistic than the raw data.
Figure 2 visualizes an excerpt of the data with some
outliers.

Results
 In order to evaluate the results, we were looking at
precision of the activity classification algorithm and also
timing results. Precision refers to number of matches
between the classification inferred by the algorithm and the
classification given by the user, i.e. the ground truth.
 In more detail, we have obtained the following results (n
= total number of classified points):

• Point-based precision: 86.5% (Precision of the
point-based classification algorithm, i.e. the
number of correct matches, divided by n.)

• Segment-based precision: 85.6% (Number of
correct of matches between the classification of
“certain” segments determined by the algorithm
and the user label for the current point, divided
by n.)

• Segment-based precision ignoring “not classified”:
92.3% (This metric ignores the cases where the
classification of the current segment is “not
classified” and therefore deviates from the user
label. This property is important because it
denotes the number of points that were needed
until the first certain classification was made.)

• Segment-based precision ignoring “not classified”
and “after change”: 96.0% (“after change”
denotes the number of points between a changed
user given classification and a segment match,
where the algorithm’s “certain” segment
classification is still the same as before the
change and therefore differs from the ground
truth. Thus, this number shows how many points
were still considered as belonging to
oldCertainSegment.)

Figure 2: Data example

Description Amount
Log Sessions 331
Recorded Position Points 75146
Given Annotations 523
- Walking 230
- Public Transport 100
- Cycling 84
- No Move 68
- Driving 37
- Jogging 4

Table 1: Logged points and annotations

76

 In addition to the precision metrics, timing aspects play
an important role. As motivated above, our system and
algorithm are intended to be used as on online algorithm,
i.e. results should be computed in real-time to be able to
immediately assess a situation and calculate the user
context score. For this evaluation, two different timing
properties are be taken into account: the time to the first
segment match and the time it takes the algorithm to adapt
to changed activity, i.e. getting to a “certain” segment with
a classification that matches the new activity. The median
for the first property was 95.0 seconds, i.e. it took about
one and a half minute for the algorithm for the initial
classification. For the second property, the delay it takes
the algorithm to correctly classify the activity after it has
changed, the results is slightly higher (106.5 seconds) but
still very acceptable.
 To summarize, the proposed algorithm showed good
performance on the collected data set and is easy to
implement as an online algorithm on an Android
smartphone. One potential problem is to distinguish
between activities that may result in similar feature values.
Foe example, distinguishing between “driving” in a traffic
jam from “walking”. We did not test this in more detail
because our main goal was just to identify “walking” as
user activity, as motivated by the scenario in the
introduction.

Conclusion
Proactive recommender systems generate
recommendations for the user without explicit user request.
This is conceivable in mobile scenarios, for example a
tourist visiting and walking around a city. To determine
when to generate a recommendation, we have developed a
proactivity model that analyzes the current situation. An
important part of this model is the user context that can be
subdivided into user status, device status and user activity.
The work presented in the paper focused on the user
activity, i.e. figuring out if the user is currently “walking”
as an indication for the appropriateness of a
recommendation at this time.
 We have also worked on investigating the other
components of user context. Thereby, we have conducted
an online survey to determine the importance of various
available features of user status and device status
(Lerchenmueller 2012). Next step is to put the different
components together and implement the whole proactivity
model in a prototype mobile recommender application, and
evaluate the complete approach in a realistic scenario.
Thereby, an important question is to investigate the power
usage by such a system to make it work in practice.

References
Dey, A.K., Abowd, G.D. and Salber, D. 2001 A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. Human Computer Interaction,
16:97-166.
Gallego Vico, D., Woerndl, W. and Bader, R. 2011. A Study on
Proactive Delivery of Restaurant Recommendations for Android
Smartphones, In Proc. Workshop Personalization in Mobile
Applications, ACM Recommender Systems Conference, Chicago,
IL, USA.
Kwapisz, J.R., Weiss, G.M. and Moore, S.A. 2011. Activity
Recognition Using Cell Phone Accelerometers. SIGKDD Explor.
Newsl., 12:74–82.
Lerchenmueller, B. 2012. Determining Context for a Proactive
Recommender System Based on User Behavior. Master’s Thesis,
Department of Computer Science, Technische Universitaet
Muenchen, Germany.
Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J. and
Korhonen, I. 2006. Activity Classification Using Realistic Data
From Wearable Sensors. Cornell University Press.
Ricci, F. 2011. Mobile Recommender Systems. International
Journal of Information Technology and Tourism, 12:205-231.
Strang, T. and Linnhoff-Popien, C. 2004. A Context Modeling
Survey. In Workshop on Advanced Context Modelling, Reasoning
and Management, UbiComp 2004 Conference on Ubiquitous
Computing, Nottingham, UK.
Woerndl, W., Huebner, J., Bader, R. and Gallego Vico, D. 2011.
A Model for Proactivity in Mobile, Context-Aware
Recommender Systems. In Proc. of the Fifth ACM Recommender
Systems Conference, Chicago, IL, USA.
Ye, J., Dobson, S., McKeever, S. 2012. Situation Identification
Techniques in Pervasive Computing: A Review. Pervasive and
Mobile Computing, 8(1): 36-66.
Zheng, Y., Chen, Y., Li, Q., Xie, X. and Ma, W. 2010.
Understanding Transportation Modes Based on GPS Data for
Web Applications. ACM Trans. Web, 4:1:1–1:36.

77

