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Abstract 
With the increasing popularity of smartphones, the wide 
availability of mobile Internet and the higher computational 
power of mobile devices, new types of applications are now 
possible. It is important to provide a smooth user experience 
by facilitating the interaction with the device. To do so, the 
goal of the work is support proactive recommendations on 
the mobile device. In order to determine the best point in 
time for a recommendation, various context information 
needs to be taken into account. One interesting aspect is 
determining the current user activity, e.g. whether the user is 
walking or not. In this paper, we present an algorithm that 
runs online on a smartphone and analyzes the user activity 
based on GPS data. 

Introduction   
In the past decade, recommender systems have become 
very popular, which led to wide variety of available 
system. In this work, we examine the comparatively new 
approach of proactive recommender systems (Ricci 2011). 

 
Motivation 
Traditional recommender systems follow a request-
response pattern that requires the user to express the desire 
for a recommendation. A contrary approach is taken in this 
work in order to enable a smoother user experience: the 
system automatically provides recommendations that may 
be appropriate in a given situation. In such a proactive 
recommender system, the system generates 
recommendations and notifies the user about it without any 
explicit user request (Woerndl et. al. 2011). For the 
decision whether a recommendation would be appropriate 
or not, the current user context has to be assessed. One 
important aspect is the knowledge about the user’s current 
activity. 
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Target Scenario and Goal 
The following description of the target scenario was the 
driving idea behind this work: A tourist is walking through 
a foreign city doing some sightseeing. After quite some 
time of discovering the city by foot, the user’s smartphone 
suggests to take a break at a recommendable coffee shop 
close-by. 

The key property of a proactive recommender system is 
delivering the best recommendations at the right point. The 
question of finding the best item(s) has already gained a lot 
of attention in prior research and thus, various well-
working systems for retrieving good recommendations 
exist. However, figuring out the best point in time for a 
recommendation has not been deeply examined yet. 
Therefore, determination when to generate a 
recommendation and present it to the user is the goal of 
this research project. A important information needed in 
the target scenario is knowing whether the user is walking 
or not, because it might have crucial influence on the need 
for a break and also on the interruptability of the user. The 
aim of this paper is to present an algorithm that can run on 
current smartphone and provides this classification in real-
time. 
 
Outline 
In the next section, important background information on 
proactive recommender systems will be given before 
presenting related work. The section Inferring User 
Activity will provide deep information about the developed 
algorithm and a needed logging framework. Subsequently, 
we describe the acquisition of test data and the evaluation 
before concluding the paper with a short summary. 

Background  

Proactive Recommender Systems 
As mentioned above, the field of proactive recommender 
systems did not yet experience a lot of attention in 
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research. Determining of the best point in time for a 
recommendation is a non-trivial and an important part of a 
proactive recommender system. If the recommendation is 
given at the wrong situation the user might be disrupted or 
annoyed which might lead to refusal of the system.  

In our earlier work, we developed a two-phase model to 
handle proactivity in mobile recommender systems based 
on the current context (Woerndl et. al. 2011). In the first 
phase, the system determines whether or not the current 
situation warrants a recommendation. This calculation is 
based on several context categories that are explained in 
the next paragraph. The second phase deals with evaluating 
the candidate items. If one or more items are considered 
good enough in the current context in the second phase, the 
recommender system communicates it to the user. The first 
phase is executed periodically in the background. The 
second phase is only executed when the first phase 
indicates a promising situation and the corresponding score 
exceeds a threshold. We have also worked on investigating 
the user interface and acceptance of proactive 
recommendations on smartphones (Gallego Vico, Woerndl 
and Bader 2011), but this study is out of the scope of this 
paper. 

Context can be defined as characterizing the situation of 
entities that are relevant to the interaction between a user 
and an application (Dey, Abowd and Salber 2001). When 
assessing the current situation in the first phase of our 
model, we are utilizing the following four context 
categories: 1. User context, e.g. the current activity of the 
user such as "walking" as inferred from sensor data, but 
also the state of the mobile device, e.g. "flight mode", 2. 
Temporal context, e.g. current time, 3. Geographic context, 
e.g. distance to available points of interest, and 4. Social 
context, e.g. whether the user is alone or not. 

The attributes in the context categories are modeled as 
simple attribute-value pairs but more complex options (see 
Strang and Linnhoff-Popien, 2004, for example) are 
possible. The main requirement is that the context 
attributes can be analyzed in real-time on the mobile 
device. 
 In this paper, we are focusing on the user context. For 
this context category, various information available on 
current smartphones can be taken into account. We 
developed a three-component scheme for describing and 
evaluating the different features of user context. At a given 
point, each component is evaluated leading to three scores. 
These scores are combined to yield a global user context 
score indicating the appropriateness of a recommendation 
for the given situation based on the user context. 
 The first component of user context is given by the user 
status. It encapsulates features describing the state of the 
user, like the telephony state, the presence of calendar 
entries etc. The device status constitutes the second 
component and is structurally very similar to the user 

status, but incorporates different features, for instance the 
state of connectivity. Both components capture the 
encapsulated features and calculate the recommendation 
score based on the following idea. For each feature, a value 
indicating its weight w exists. Furthermore, every feature 
value has an appropriateness factor that shows how 
appropriate a recommendation would be for this feature 
value. The needed values for the weights and 
appropriateness factors have been determined by an online 
user study (Lerchenmueller 2012). 

The third and most interesting component in the context 
of this paper is the user activity. As described earlier, the 
classification if the user is walking or not is the desired 
information for the target scenario. In contrast to the other 
two components, this constitutes a binary value. But as 
described above, the outcome of each component of the 
context model is a concrete recommendation score. In 
order to achieve this, the duration of the user activity is 
taken into account in case that he / she is walking, leading 
to the formula RSActivity= log(d), where d is the duration in 
minutes if duration > 1 or otherwise d = 1.  
 Based on the recommendation scores of the three 
respective components, the global user context score can 
be calculated by linearly combining the single values 
allowing for different weights, for example. The resulting 
recommendation score indicates how appropriate a 
recommendation at the current time is, based on the current 
user context. This information can then be used together 
with other context information in the first phase of the two-
phase proactivity model to decide whether to generate a 
recommendation or not.  

Related Work 
As this paper focuses on the inference of the user activity 
as part of the context model, only prior research 
considering activity classification will be briefly 
summarized in this section. A recent overview can be 
found in (Ye, Dobson and McKeefer 2012). 
 (Kwapisz, Weiss and Moore 2011) use the 
accelerometer of Android smartphones to collect data 
about the user activity and infer the type of the activity 
afterwards. Similar approaches have been taken before, for 
instance in (Parkka et. al. 2006) where multiple dedicated 
accelerometers where attached to test persons. Although 
the accelerometer allows for pretty good activity 
classification, it can be hardly used in an online application 
as the update rate is very high and usually pre-processing 
of the data is necessary. Thus, the global positioning 
system (GPS), which typically does not require complex 
pre-processing, will be used for the algorithm in this paper. 
(Zheng et. al. 2010) presented an approach that only relies 
on collected GPS data to distinguish various types of user 
activity. In a first step, a recorded GPS track is divided into 
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walking and non-walking points based on upper thresholds 
for the velocity and acceleration. Next, the points are 
grouped into walking and non-walking segments. 
Afterwards, various data mining techniques are applied to 
the non-walking segments to further refine the activity 
classification.  

Inferring User Activity 
The related approaches briefly mentioned in the last 
section, have one important property in common: the user 
activity is inferred from the collected data offline on an 
ordinary computer and not on the mobile device. That 
allows using complex and computationally intense data 
mining techniques. In our scenario, the algorithm has to 
run online, i.e. provide results in real-time, on smartphones 
with limited resources. One important advantage of this 
approach is that the collected user data remains on the 
mobile device under the control of the user, which 
improves privacy. Nevertheless, (Zheng et. al. 2010) 
provides an interesting approach as they only relied on 
GPS data. The following description of our developed 
algorithm will show that their work partially served as a 
foundation for our approach. 

General Idea 
As user activity is one part of the user context, its inference 
follows the same principles as context inference in general. 
First, raw data needs to be captured by sensors, which can 
be real hardware sensors but also software sensors. Such 
information is referred to as the low-level context. In order 
to make use of the context, usually a more abstract view is 
needed: high-level context. Considering the user activity, 
the received raw GPS position can be seen as the low-level 
context. Knowing that the user is “walking” constitutes the 
high-level context. In order to infer the high-level context, 
the captured raw data typically needs to be pre-processed. 
As already mentioned, data delivered by the device’s 
positioning system can be used without a lot of pre-
processing. In how far this step was necessary in our 
approach will be discussed in the next section. After the 
pre-processing, the data needs to be interpreted to infer the 
high-level context. This typically involves various data 
mining techniques. Furthermore, information from 
different sources can be combined. After having inferred 
the high-level context, the final step is to use or apply the 
context information. In the target scenario, the overall user 
context score is used to decide whether a recommendation 
is appropriate or not, as explained above. The user activity 
is one part of the information that forms the high-level user 
context. As all steps need to be performed on a smartphone 
the mobile device, the limited resources of the mobile 

device have to be taken into account. This relates to 
computational power as well as to battery life.  

Like all current mobile operating system, Android 
provides access to the device’s positioning system via an 
API. In addition to the GPS, the determination of the 
position can also be done via WiFi or cell tower 
triangulation. Although these methods are usually less 
accurate than GPS, they might be very helpful in areas 
where the availability of GPS is not guaranteed, such as 
inside building or parts of big cities. Therefore, the entire 
device’s positioning capabilities are used to achieve best 
results for our application. 

Activity Classification Algorithm 
As motivated above, the goal of the activity classification 
algorithm is to find out whether the user us walking or not. 
In order to classify the current user activity, the algorithm 
needs to receive updates about the user’s position in terms 
of a point described by latitude and longitude on a regular 
basis. Starting with the second point, the following steps 
are executed.  
 
1. Filtering 
 
GPS data typically does not require pre-processing. 
However, in contrast to (Zheng et. al. 2010) we apply this 
step before doing the actual classification. To put it more 
precisely, filtering is performed to remove invalid points. 
Such outliers can result from inexact GPS measurements. 
Filtering out these points has two advantages: 
computational effort can be saved and the classification 
described in step 2 is more accurate.  

The process of filtering includes the extraction of 
features. First, a point’s accuracy, which is delivered by the 
positioning system, is considered. If it lies above a certain 
threshold, the point is filtered out and the next one is 
examined. Otherwise, the calculation of features is started: 
distance to the previous point, time difference to previous 
point, velocity and acceleration. After the calculation of 
each feature value, the algorithm executes a filter. For 
example, if the distance between two consecutive points is 
zero, the point is discarded. Otherwise, the velocity is 
calculated. If the resulting value lies above a certain 
threshold the point is again filtered out etc. Thresholds for 
the filtering were heuristically assigned after some initial 
tests, while other values were adopted from the work of 
(Zheng et al. 2010). As mentioned above, such invalid 
points can occur due to measurement errors and result in 
unrealistic high values for the velocity.  
 In addition to these rather simple filtering approaches, 
the point’s (Pi) neighborhood is taken into account, i.e. the 
previous point (Pi-1) and the next point (Pi+1). A simple 
heuristic is then applied to filter out points that follow the 
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typical outlier pattern of GPS points (Figure 1): if the 
distance between Pi-1 and Pi+1 is smaller than the distance 
between Pi and Pi+1 the point Pi is considered as an outlier. 
The consideration of the point’s neighborhood introduces 
the need for knowing the next point. Therefore, not only 
the previous point must be remembered, but also the point 
in question needs to be saved and can not be examined, 
before the next point is available. Consequently, the 
algorithm works with a delay of one point and is thus 
dubbed quasi real-time. 

 
 
 
 
 
 

2. Point-based Classification 
 
When a point is considered as valid, i.e. it is not filtered 
out, the point-based classification is executed. This is 
similar to (Zheng et. al. 2010), but is executed in real-time 
in our case. If the point’s velocity exceeds a threshold WTv 
or it’s acceleration is above a value WTa, the point is 
considered as a “non-walking” point. Otherwise it will be 
seen as “walking” point. At first sight, such a classification 
might seem sufficient. However, there are some aspects 
that must not be neglected. If you look at each point 
separately and only base the classification upon the values 
for velocity and acceleration, a frequent alternation might 
occur. Even if the user is walking, points with values that 
lie above the thresholds can be delivered by the positioning 
system due to inexact measurements. In our use case, such 
an alternation is very impractical, as a certain continuity is 
needed in order to make a statement about the duration of 
the current activity. 
 
3. Segment-based Classification 
 
To overcome these drawbacks, we apply a segment-based 
classification. Our approach is different from the one of 
(Zheng et. al. 2010) concerning the initial classification 
and the number of segments. Each segment has two 
properties: the classification (not classified | walking | non-
walking) and the state (certain | uncertain). In our case, at 
most two segments can exist and only one can have the 
state “certain”. As in (Zheng et. al. 2010), we are interested 
in segmenting a whole recorded track afterwards, the 
number of possible segments is arbitrary. Furthermore, the 
classification “not classified” does not exist in their 
approach. The following paragraphs will illustrate the idea 
behind the algorithm. 

The initial segment is deemed as “uncertain” and “not 
classified”. Each point received after the point-based 
classification is included in the segment. This means that 
the segment keeps track of the covered distance and the 
number of included “walking” and “non-walking” points. 
If the distance and the number of included points both 
exceed certain thresholds, the certainty of the segment is 
evaluated. In the simplest and most successful approach, 
this is done by comparing the number of included 
“walking” points against the “non-walking” ones. The 
classification of the majority is then taken as the 
classification for the segment, whose state is changed to 
certain at the same time then.  

Now that a certain segment exists, the classification of a 
new point is compared to the classification of the segment. 
If it matches, the point is included into the segment. 
Otherwise, the segment becomes the oldCertainSegment 
and a new uncertain segment with the point’s classification 
is created. Nevertheless, the global classification of the 
current activity is still given by the oldCertainSegment. If 
the next point’s classification matches the one of the new 
segment, it is included. This continues until enough points 
are included in the new segment and a long enough 
distance has been covered to deem it as certain. In this 
case, the oldCertainSegment is discarded. If in contrast, the 
new segment is still uncertain and a point arrives, whose 
classification matches the one of the oldCertainSegment 
and not the new one, the information from the uncertain 
segment as well as the new point are included in the 
oldCertainSegment. Subsequently, the oldCertainSegment 
becomes the only segment again, as the new one is 
discarded. 

 The use of two segments and the fact that certainty is not 
lost right away when a point with a different classification 
arrives, helps to overcome the problem of having to deal 
with frequently changing activity classifications. It 
introduces exactly the continuity needed for our use case. 
One resulting possible drawback might be a delay in the 
recognition of real changes in the activity. If the user 
changes from “walking” to “cycling”, for instance, the 
algorithm might require some time until the new activity is 
correctly recognized. To what extent this is a problem will 
be discussed in the section Evaluation. 

Logging and Classification Framework 
In order to test the algorithm, test data was required. For 
this purpose, we have developed a framework and an 
application for logging labeled GPS data (and other 
information) on the Android system. The application 
provides a simple user interface for starting and stopping 
the logging process and selecting the current activity. 

For the testing of the algorithm, we developed a program 
that reads the logged position information and gives the 

Figure 1: Typical GPS outlier pattern 
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recorded points sequentially to a classification engine that 
executes the algorithm described above. The given point-
based as well as the segment-based classification are then 
compared to the ground truth, i.e. the user given label. In 
addition to the classification, this tool also examines timing 
aspects to analyze the real-time properties. 

Evaluation 

This section first explains how test data was acquired and 
then discusses the results of the evaluation. 

Setup  
For the acquisition of test data, a group of twelve people of 
mixed gender was equipped with the Android application 
described at the end of the previous section. Seven 
participants did not own an Android smartphone 
themselves and were provided with test devices. Our 
system does not need special requirements concerning the 
hardware. The one requirement was to run at least version 
2.3.3 of the Android system to guarantee correct 
operability. In total, four different types of devices were 
used. This was a good way of verifying if the logging 
software, and thus also the access of the positioning 
system, works as desired on different devices. Equipped 
with devices and software, participants were asked to track 
and label their activity for a duration of 10 to 14 days. 
During this time, the participants were asked to collect as 
much position data as possible and go for a walk of a 
minimum duration of 30 minutes at least three times.  
 
 
 
 
 
 

 After the user study has been conducted, the logged 
information was collected from all the devices. The total 
number of logged points and given labels (annotations) is 
shown in Table 1. Since test users were instructed to 
activate the logging mostly when they were moving 
around, the amount of “no move” points in Table 1 is 
rather low. 
 

Based on the collected data, the filtering mechanism was 
examined first.  The results showed that filtering should be 
applied, as a lot of outliers were present in the recorded 
data. Manual inspection considering also the resulting 
values for velocity and acceleration showed that the 
filtered data was much more realistic than the raw data. 
Figure 2 visualizes an excerpt of the data with some 
outliers. 

Results 
 In order to evaluate the results, we were looking at 
precision of the activity classification algorithm and also 
timing results. Precision refers to number of matches 
between the classification inferred by the algorithm and the 
classification given by the user, i.e. the ground truth. 
 In more detail, we have obtained the following results (n 
= total number of classified points): 

• Point-based precision: 86.5% (Precision of the 
point-based classification algorithm, i.e. the 
number of correct matches, divided by n.) 

• Segment-based precision: 85.6% (Number of 
correct of matches between the classification of 
“certain” segments determined by the algorithm 
and the user label for the current point, divided 
by n.) 

• Segment-based precision ignoring “not classified”: 
92.3% (This metric ignores the cases where the 
classification of the current segment is “not 
classified” and therefore deviates from the user 
label. This property is important because it 
denotes the number of points that were needed 
until the first certain classification was made.) 

• Segment-based precision ignoring “not classified” 
and “after change”: 96.0% (“after change” 
denotes the number of points between a changed 
user given classification and a segment match, 
where the algorithm’s “certain” segment 
classification is still the same as before the 
change and therefore differs from the ground 
truth. Thus, this number shows how many points 
were still considered as belonging to 
oldCertainSegment.) 

Figure 2: Data example  

Description Amount 
Log Sessions 331 
Recorded Position Points 75146 
Given Annotations 523 
- Walking 230 
- Public Transport 100 
- Cycling 84 
- No Move 68 
- Driving 37 
- Jogging 4 

 
Table 1: Logged points and annotations 

76



 
 In addition to the precision metrics, timing aspects play 
an important role. As motivated above, our system and 
algorithm are intended to be used as on online algorithm, 
i.e. results should be computed in real-time to be able to 
immediately assess a situation and calculate the user 
context score. For this evaluation, two different timing 
properties are be taken into account: the time to the first 
segment match and the time it takes the algorithm to adapt 
to changed activity, i.e. getting to a “certain” segment with 
a classification that matches the new activity. The median 
for the first property was 95.0 seconds, i.e. it took about 
one and a half minute for the algorithm for the initial 
classification. For the second property, the delay it takes 
the algorithm to correctly classify the activity after it has 
changed, the results is slightly higher (106.5 seconds) but 
still very acceptable. 
 To summarize, the proposed algorithm showed good 
performance on the collected data set and is easy to 
implement as an online algorithm on an Android 
smartphone. One potential problem is to distinguish 
between activities that may result in similar feature values. 
Foe example, distinguishing between “driving” in a traffic 
jam from “walking”. We did not test this in more detail 
because our main goal was just to identify “walking” as 
user activity, as motivated by the scenario in the 
introduction. 

Conclusion  
Proactive recommender systems generate 
recommendations for the user without explicit user request. 
This is conceivable in mobile scenarios, for example a 
tourist visiting and walking around a city. To determine 
when to generate a recommendation, we have developed a 
proactivity model that analyzes the current situation. An 
important part of this model is the user context that can be 
subdivided into user status, device status and user activity. 
The work presented in the paper focused on the user 
activity, i.e. figuring out if the user is currently “walking” 
as an indication for the appropriateness of a 
recommendation at this time. 
 We have also worked on investigating the other 
components of user context. Thereby, we have conducted 
an online survey to determine the importance of various 
available features of user status and device status 
(Lerchenmueller 2012). Next step is to put the different 
components together and implement the whole proactivity 
model in a prototype mobile recommender application, and 
evaluate the complete approach in a realistic scenario. 
Thereby, an important question is to investigate the power 
usage by such a system to make it work in practice. 
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