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Abstract

In the area of reasoning about actions, one of the key compu-
tational problems is the projection problem: to find whether
a given logical formula is true after performing a sequence
of actions. This problem is undecidable in the general situa-
tion calculus; however, it is decidable in some fragments. We
consider a fragment P of the situation calculus and Reiter’s
basic action theories (BAT) such that the projection problem
can be reduced to the satisfiability problem in an expressive
description logic ALCO(U) that includes nominals (O), the
universal role (U ), and constructs from the well-known logic
ALC. It turns out that our fragment P is more expressive than
previously explored description logic based fragments of the
situation calculus. We explore some of the logical proper-
ties of our theories. In particular, we show that the projec-
tion problem can be solved using regression in the case where
BATs include a general “static” TBox, i.e., an ontology that
has no occurrences of fluents. Thus, we propose seamless
integration of traditional ontologies with reasoning about ac-
tions. We also show that the projection problem can be solved
using progression if all actions have only local effects on the
fluents, i.e., in P, if one starts with an incomplete initial theory
that can be transformed into an ALCO(U) concept, then its
progression resulting from execution of a ground action can
still be expressed in the same language. Moreover, we show
that for a broad class of incomplete initial theories progres-
sion can be computed efficiently.

1 Introduction
The projection problem is an important reasoning task in AI.
It is a prerequisite to solving other computational problems
including planning and high-level program execution. In-
formally, the projection problem consists in finding whether
a given logical formula is true in a state that results from
a sequence of transitions, when knowledge about an ini-
tial state is incomplete. In description logics (DLs) and
earlier terminological systems, this problem was formu-
lated using roles to represent transitions and concept ex-
pressions to represent states. This line of research as well
as earlier applications of DLs to planning and plan recog-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nition are discussed and reviewed in (Devanbu and Lit-
man 1996). Using a somewhat related approach, the pro-
jection problem and a solution to the related frame prob-
lem (i.e., how to provide a concise axiomatization of non-
effects of actions) have been explored using propositional
dynamic logic, e.g., see (De Giacomo and Lenzerini 1995;
De Giacomo et al. 1999) These papers discuss relations
with the propositional fragment of the situation calculus and
review previous work. A more recent work explores de-
cidable combinations of several modal logics, or combin-
ing description logics with a modal logic of time or with
a propositional dynamic logic (Artale and Franconi 2000;
Wolter and Zakharyaschev 1998; Chang et al. 2012) The re-
sulting logics are somewhat limited in terms of expressiv-
ity because to guarantee the decidability of the satisfiability
problem in the combined logic, only atomic actions can be
allowed. In applications, it is sometimes convenient to con-
sider actions with arbitrary many arguments.

On the other hand, there are several proposals regard-
ing the integration of DLs and reasoning about actions
(Lutz and Sattler 2002; Baader et al. 2005; Liu et al. 2006;
Calvanese et al. 2007; Gu and Soutchanski 2010). In (Gu
and Soutchanski 2010), it is shown that the projection prob-
lem is decidable in a proposed fragment of the situation
calculus (SC). However, the logical languages developed in
these papers are not expressive enough to represent some of
the action theories popular in AI or to solve the projection
problem in a general case. For example, Gu& Soutchanski
propose a DL based situation calculus (Gu and Soutchanski
2010), where the projection problem is reduced to the satis-
fiability problem in ALCO(U), a DL that adds nominals O
and the universal (global) role U to the well known descrip-
tion logic ALC. The universal role links any two individuals
in the domain; it is introduced to add the usual unguarded ∀-
and ∃-quantifiers which are handy to represent incomplete
knowledge about an initial state and about conditional ef-
fects. They consider Reiter’s basic action theories (BATs)
(Reiter 2001), but impose syntactic constraints on the for-
mulas that can appear in axioms by concentrating on a sub-
set FODL of FO2 formulas, where FO2 is a fragment of
first order logic (FOL) with only two variables. In the frag-
ment of SC that they consider, action functions may have
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at most two object arguments, the formulas in the precon-
dition axioms (PA) and context formulas in the successor
state axioms (SSA) should be FODL formulas (if the situ-
ation argument is suppressed), where FODL formulas are
those FO2 formulas, which can be translated into a concept
inALCO(U) using the standard translation between DLs and
fragments of FOL. They illustrate their proposal with sev-
eral realistic examples of dynamic domains, but it turns out
that some of the well-known examples, e.g., the Logistics
domain from the first International Planning Competition
(IPC) (McDermott 2000), cannot be represented due to syn-
tactic restrictions on the language they consider. Here and
subsequently, when we mention planning domain specifica-
tions, we consider them as FOL theories without making the
Domain Closure Assumption (DCA) common in planning,
i.e., without reducing them to purely propositional level.
Later, (Gu 2010) introduces a possible extension, where the
syntactic restrictions on the class of formulas FODL are re-
laxed, but stipulates SSAs for dynamic roles (fluents with
two object arguments and one situational argument) to be
context-free. She conjectures, but does not prove, that the
projection problem in that extension can be reduced to satis-
fiability in ALCO(U).

In our paper, we consider an even more expressive frag-
ment of SC, called P , where all SSAs can be context depen-
dent with context conditions formulated in a language L that
includes FODL as a proper fragment. Manual translations
of planning specifications (from IPC) into our language P
show that P has expressive power sufficient to represent not
only Blocks World and Logistics, but also many other pop-
ular benchmarks (Kudashkina 2011; Yehia 2012). In any
case, reducing projection to satisfiability inALCO(U) is jus-
tified by the fact that there are several off-the-shelf OWL2
reasoners that can be employed to solve the latter problem,
since a DL SROIQ underlying the Web Ontology Language
(OWL2) includes ALCO(U) as a fragment (Cuenca Grau et
al. 2008). In our paper, we concentrate on foundational work
and explore the logical properties of P .

Our paper contributes to Cognitive Robotics and to rea-
soning about actions by formulating an expressive fragment
of SC where the projection problem is decidable without
the domain closure assumption (DCA) and closed world as-
sumption (CWA), i.e., when an initial theory is incomplete
and is not purely propositional.

2 Definition of P
We assume that the reader is familiar with SC from (Pirri
and Reiter 1999; Reiter 2001) and knows that a BAT D =
DAP ∪DSS ∪UNA∪DS0 ∪Σ consists of the precondition
axioms (PAs) DAP , that use the binary predicate symbol
Poss, successor state axioms (SSAs) DSS , a set of unique
name axioms UNA, an initial theory DS0 that specifies an
incomplete theory of the initial situation S0, and Σ - a set of
domain independent foundational axioms about the relation
s1 � s2 of precedence between situations s1 and s2. In (Re-
iter 2001), axioms Σ are formulated in second-order logic,
all other axioms are in many-sorted FOL, so we assume the
usual definitions of sorts, terms, well-formed formulas, and

so on. A fluent is a predicate with the last argument s of sort
situation. As usual, we say that a situation calculus FOL
formula ψ(s) is uniform in s, if s is the only situation term
mentioned in ψ(s), the formula ψ has no occurrences of the
predicates Poss,≺, and has no quantifiers over variables of
sort situation. The formula ψ obtained by deleting all ar-
guments s from fluents in the formula ψ(s) uniform in s is
called the formula with suppressed situation argument; the
interested reader can find details in (Pirri and Reiter 1999).

Fluents with a single object argument, F (x, s), are called
dynamic concepts, and fluents with two object arguments,
F (x, y, s), are called dynamic roles. In the signature of a
BAT D, any predicate that is not a fluent must have either
one or two arguments, and is called either a (static) concept,
or a (static) role, respectively. Subsequently, we consider
only BATs with relational fluents, and do not allow any other
function symbols except do(a, s) and action functions. In
particular, terms of sort object can be only constants or vari-
ables. Actions may have any number of object arguments.

To specify syntactic constraints onDap andDssa, we con-
sider a language L, that has at most n + 2 object variables
x, y, z1, . . . , zn, for some integer n > 0. We assume L has
at least n constants bi, 1 ≤ i ≤ n. The purpose of the vari-
ables zi is to serve as place-holders to be instantiated with
constants bi that occur as named object arguments of ground
action terms. This language L consists of two related sets of
formulas: Fx and Fy . Formulas φ(x) from the set Fx can
have as free variables either x, or some of the place-holder
variables zi, 1 ≤ i ≤ n, but cannot have free occurrences of
y. Formulas φ(y) from the set Fy can have free occurrences
of either y, or some of the place holders zi, 1 ≤ i ≤ n,
but cannot have free occurrences of x. Note the formulas φ
may have free variables zi that are not shown explicitly, but
it will be always clear from the context which variables are
free in the formulas. We use the symbol ·̃ to denote a bijec-
tion between Fx and Fy . If φ(x) ∈ Fx, then φ̃(y) is the dual
formula of φ(x), obtained by renaming in φ(x) every oc-
currence of x (both free and bound) with y and every bound
occurrence of y with x. Similarly, if φ(y) ∈ Fy , then φ̃(x) is
the dual formula to φ(y) obtained by replacing every occur-
rence of y with variable x, and every bound occurrence of x
with y. The sets Fx and Fy have a non-empty intersection.
For example, sentences that mention constants only, and Fx
formulas that have only occurrences of z variables belong to
both Fx and to Fy . Each formula φ without x, y variables is
mapped by bijection φ̃ to itself. We are ready to give the
following inductive definition.

Definition 1 Let L be the set of first-order logic formulas
such that L = Fx ∪ Fy , and ·̃ be a bijection between for-
mulas in Fx and Fy as defined above, where the sets Fy and
Fx are minimal sets constructed as follows. (We focus on
Fx, since Fy is similar.)

1. > and ⊥ are in Fx.
2. If AC is a unary predicate symbol, z is a variable dis-

tinct from x and y, and b is a constant, then the formulas
AC(x), AC(z), and AC(b) are in Fx.
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3. If b is a constant, and z is a variable that is distinct from
x and y, then the formulas x=x, x=b, x=z are in Fx.

4. IfR is a binary predicate symbol, b1 and b2 are constants,
and z1 and z2 are variables that are distinct from x and y,
then R(z1, z2), R(b1, b2), R(b1, z2), R(z1, b2), R(x, b2)
and R(x, z2) are formulas in Fx.

5. If φ ∈ Fx, then also ¬φ ∈ Fx.
6. If φ, ψ ∈ Fx, then both (φ∧ψ) ∈ Fx and (φ∨ψ) ∈ Fx.
7. If φ(x) ∈ Fx, R is a binary predicate symbol, b is any

constant, z is any variable distinct from x and y, and
φ̃(y) is the formula dual to φ(x), then all of the follow-
ing formulas with quantifiers guarded by R belong to Fx:
∃y.R(x, y)∧ φ̃(y), ∃y.R(b, y)∧ φ̃(y), ∃y.R(z, y)∧ φ̃(y),
as well as ∀y.R(x, y) ⊃ φ̃(y), ∀y.R(b, y) ⊃ φ̃(y),
∀y.R(z, y) ⊃ φ̃(y).

8. If φ ∈ Fx, φ̃ is the formula dual to φ, then [∃x].φ(x),
[∀x].φ(x) as well as [∃y.]φ̃(y), [∀y.]φ̃(y) belong to Fx,
where [∃] ([∀], respectively) means quantifiers are optio-
nal and applied only when a formula has a free variable.

The intuition behind the definition of L is that any variable
z other than x and y has to be free in a formula from L. The
set of formulas FODL=FOxDL∪FO

y
DL defined in (Gu and

Soutchanski 2010) is a proper subset of L because the set of
formulas FOxDL (FOyDL, respectively) is a proper subset of
Fx (Fy , respectively): no place holder variables z1, . . . , zn
are allowed in FOxDL and FOyDL. We say a formula φ ∈ L
is a z-free L formula, if all occurrences of variables z (if
any), other than x and y, in φ are instantiated with constants.

Lemma 1 There are syntactic translations between the set
of z-free formulas φ ∈ L and the concept expressions from
the language ALCO(U) in both directions, i.e., they are
equally expressive. Moreover, such translations lead to no
more than a linear increase in the size of the formula.

This lemma is proved using the standard translation be-
tween DLs and FOL; the proof is similar to the proof of
Lemma 1 in (Gu and Soutchanski 2010). Using the fluents
Loaded(box, s), At(box, city, s), and In(box, vehicle, s)
from Logistics as an example, after suppressing s, a z-free
L formula Loaded(B1)∨∃x(Box(x)∧x 6=B1∧In(x, T1))
is translated as ∃U.({B1}uLoaded)t∃U.(Boxu¬{B1}u
∃In.{T1}, where {B1}, {T1} are nominals (i.e., concepts
interpreted as singleton sets), and ∀x(¬Box(x)∨ x = B1 ∨
At(x, Toronto)), all boxes distinct from B1 are in Toronto,
is translated as ∀U.(¬Boxt {B1} t ∃At.{Toronto}). No-
tice why nominals and U are important. Subsequently, we
consider BATs that use in axiomsL-like formulas uniform in
s. This motivates the following requirements. For brevity,
let a vector x̃ of object variables denote either x, or y, or
〈x, y〉; also, let z̃ denote a vector of place holder variables.
Action precondition axioms DAP : For each action function
A(~z), there is a single precondition axiom uniform in s:

(∀~z, s). Poss(A(~z), s) ≡ ΠA(~z)[s], (1)

where ΠA(~z, s) is uniform in s; it is an L formula with ~z as
the only free variables, if any, when s is suppressed. When

object arguments of A(~z) are instantiated with constants, by
Lemma 1, the RHS of each precondition axiom can be trans-
lated into a concept in ALCO(U), when s is suppressed.
Successor state axioms DSS : There is a single SSA for each
fluent F (~x, do(a, s)). According to the general syntactic
form of the SSAs provided in (Reiter 2001), without loss
of generality, we can assume that each axiom is as follows:
F (~x, do(a,s)) ≡ γ+

F (~x, a,s) ∨ F (~x, s) ∧ ¬γ−F (~x, a,s) (2)
where each of the γF ’s are disjunctions either of the form

[∃~z].a = A(~u) ∧ φ(x, ~z, s),
/* a set of variables ~z ⊆ ~u; may be {x} ∈ ~u */

if (2) is a SSA for a dynamic concept F (x, s) with a single
object argument x, or

[∃~z].a = A(~u) ∧ φ(x, ~z, s) ∧ φ(y, ~z, s),
/* variables ~z ⊆ ~u, possibly {x, y}∩~u 6= Ø */

if (2) is a SSA for a dynamic role F (x, y, s), where
φ(~x, ~z, s) is a context condition uniform in s saying when
an action A can have an effect on the fluent F . The formula
φ(x, ~z, s) ∈ Fx, the formula φ(y, ~z, s) ∈ Fy , when s is sup-
pressed. A set of variables ~z in a context condition φ(~x, ~z, s)
must be a subset of object variables ~u. If ~u in an action func-
tion A(~u) does not include any z variables, then there is no
∃~z quantifier.

If not all variables from ~x are included in ~u, then it is said
that A(~u) has a global effect, since the fluent F experiences
changes beyond the objects explicitly named in A(~u) (e.g.,
driving a truck between two locations changes location of
all boxes loaded into the truck). When a vector of object
variables ~u contains both ~x and ~z, we say that the action
A(~u) has a local effect. A BAT is called a local-effect BAT
if all of its actions have only local effects. Observe that in a
local-effect SSA, when one substitutes a ground action term
A(~bx, ~bz) for a variable a in the formula [∃~z].a=A(~x, ~z) ∧
φ(~x, ~z, s), applying UNA for action terms yields [∃~z].~x =
~bx∧~z= ~bz∧φ(~x, ~z, s), and applying ∃z(z=b∧φ(z)) ≡ φ(b)

repeatedly results in the formula ~x= ~bx ∧ φ(~x, ~bz, s).
Initial TheoryDS0 : TheDS0 is anL sentence without z vari-
ables, i.e., it can be transformed into an ALCO(U) concept.

A BAT D that satisfies all of the above requirements is
called an action theory P . We note that BATs proposed in
(Gu and Soutchanski 2010) are less general than P , because
their axioms should be written using formulas from FODL,
but FODL is a proper subset of L. Sometimes, for clarity,
when we talk about P , we say that it is an L-based BAT,
in contrast to FODL-based BATs considered in (Gu and
Soutchanski 2010). The Blocks World is an example of a
FODL-based BAT, while Logistics is an example of P . Lo-
gistics cannot be formulated as a FODL-based BAT because
it includes actions, e.g., drive(Truck, Loc1, Loc2, City),
with more than 2 arguments, and the SSA for a dynamic
role At(obj, loc, s) uses as a context condition an Fx for-
mula, while in (Gu and Soutchanski 2010), the SSAs for dy-
namic roles must be context-free. Subsequently, for brevity,
instead of saying that φ(s) is a SC formula uniform in s that
becomes an L formula when s is suppressed, we say simply
that φ(s) is an L formula.

Due to space limitations, we skip introduction to DLs,
but the reader can find one in (Baader, Horrocks, and Sat-
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tler 2007). Recall that the satisfiability problem (SAT) of a
concept and/or the consistency problem of an ABox in the
DL language ALCO(U) can be solved in EXPTIME. As a
comparison, SAT in SROIQ (this DL includes ALCO(U)
as a fragment) has high complexity 2NEXPTIME-complete.
However, W3C recommends OWL2 for applications, be-
cause OWL2 solvers handle many large realistic instances
reasonably fast, see (Cuenca Grau et al. 2008) for a related
discussion of OWL2 and SROIQ.

Example 1 As an example of a P BAT, imagine searching
for a given file in a depth-first search (DFS) like manner
through directories. An action forw(z1, z2, z3) makes
forward transition from a current directory z1 to its child
directory z2 while searching for a file z3 is possible in
situation s, if z2 has never been visited. This is represented
using the fluent vis(z2, z3, s). A backward transition
back(z1, z2, z3) from z1 back to its parent z2 is possible
only if all children of z1 had been visited while searching for
a file z3. P also includes situation independent unary predi-
cates file(x), dir(x), and the binary predicate dirCh(x, y)
meaning that x is a direct child of y in a file system. The
search for a file f in a directory d succeeds when find(d, f)
is executed. This action is possible when d actually contains
f . This is represented using the fluent at(d, f, s). Using
chmod(z1, z2) one can toggle in situation s permissions of
a directory z1 between z2 = on and z2 = off , if the current
permission x for this directory z1, represented using the
fluent p(z1, x, s), is such that the values of x and z2 are
opposite. The following are precondition axioms (PA) for
all actions (the variables zi, s are ∀-quantified at front).

Poss(forw(z1,z2,z3),s) ≡ dir(z1) ∧ dir(z2) ∧ z1 6=z2∧
file(z3) ∧ dirCh(z2,z1) ∧ ¬vis(z2,z3,s) ∧ at(z1,z3,s)
Poss(back(z1,z2,z3),s)≡ dir(z1) ∧ dir(z2) ∧ file(z3)∧

dirCh(z1, z2) ∧ at(z1, z3, s)∧
¬∃y ( dirCh(y, z1) ∧ dir(y) ∧ ¬vis(y, z3, s) )

Poss(find(z1,z2),s) ≡ file(z1) ∧ dir(z2)∧
dirCh(z1, z2) ∧ at(z2, z1, s)

Poss(chmod(z1,z2),s)≡ dir(z1)∧ (z2 =on ∨ z2 =off)∧
∃x.(p(z1, x, s) ∧ x 6= z2).

The direct effects and non-effects of actions are formu-
lated using Successor State Axioms (SSA). The current
DFS for a file y arrives at a directory x when either forward
or backtracking transition leads to x; otherwise, if any other
action is executed, it remains at x. Also, the directory x
becomes visited as soon as DFS arrives there following
some forward transition, but only if the current permission
of x is on in situation s. Otherwise, forward transition has
no effect. Changing permission of a directory x to y has
an effect only when DFS for a file is currently located at x
in situation s. A file f is found after doing find(x, z1 in a
directory z1 only if permission is on for this directory in s.

at(x,y,do(a, s))≡ ∃z1(a=forw(z1, x, y)∧p(x, on, s))∨
∃z1(a=back(z1, x, y)) ∨

at(x,y,s) ∧ ¬∃z1(a=forw(x, z1, y) ∧ p(z1,on,s))∧
¬∃z1(a=back(x, z1, y))

vis(x,y,do(a, s))≡ ∃z1(a=forw(z1, x, y)∧p(x,on,s))∨
vis(x, y, s)

p(x, y, do(a, s)) ≡ a=chmod(x, y) ∧ ∃y at(x, y, s) ∨
p(x, y, s) ∧ ¬∃z1(a=chmod(x, z1) ∧ y 6= z1∧

∃y.at(x, y, s) )
found(x,do(a,s))≡ ∃z1(a=find(x, z1)∧p(z1,on,s))∨

found(x, s).

Notice that the SSAs have syntactic forms required in P .

3 The Projection Problem in P
Let D be a description logic based BAT defined in (Gu and
Soutchanski 2010), α1, · · · , αn be a sequence of ground
action terms, and Goal(s) be a query formula uniform in
s such that it can be transformed into an ALCO(U) con-
cept, if s is suppressed. Subsequently, we call a query
Goal(S) a regressable formula, if S is a ground situation
term. One of the most important reasoning tasks in the
SC is the projection problem, that is, to determine whether
D |= Goal(do([α1, · · · , αn], S0)). Another basic reasoning
task is the executability problem: whether all ground actions
in α1, · · · , αn can be consecutively executed. This can be
reduced to the projection problem using the precondition ax-
ioms, and for this reason we no longer consider it. Planning
and high-level program execution are two important settings
where the executability and projection problems arise natu-
rally. Regression is a central computational mechanism that
forms the basis of automated solutions to the executability
and projection tasks in the SC (Reiter 2001). A recursive
definition of the modified regression operator R on any re-
gressable formula Goal(S) is given in (Gu and Soutchanski
2010). The modified regression operator makes sure that the
only two available object variables x, y are re-used when re-
gressing a quantified formula in contrast to Reiter’s regres-
sion, where new variables are introduced. For a regress-
able formula Goal(S), we use notation R[Goal(S)] to de-
note the regressed formula uniform in S0 that results from
replacing repeatedly fluent atoms about do(α, s) by logi-
cally equivalent expressions about s as given by the RHS of
SSAs, until such replacements no longer can be made; this
is why the regressed formula is uniform in S0. For any static
concept C(x) and role R(x, y), by definition of regression
R[C(x)]=C(x) andR[R(x, y)]=R(x, y).

The regression theorem (Theorem 8) proved in (Gu and
Soutchanski 2010) shows that R[Goal(S)] is a FODL for-
mula, when S0 is suppressed and, as a consequence, one
can reduce the projection problem for a regressable sentence
Goal(S) to the satisfiability problem inALCO(U) as long as
a BAT D satisfies syntactic restrictions due to using FODL
formulas in axioms:

D |= Goal iff DS0 |= R[Goal(S)],

where it is assumed that DS0
includes UNA, unique name

axioms for objects. (Unique name axioms for actions are
used by modified regression, and they are no longer required
when regression terminates.) This statement is proved in
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(Gu and Soutchanski 2010) for an extended BAT that ad-
ditionally includes a set of axioms DT = DT,st ∪ DT,dyn,
where the static TBox DT,st is an acyclic set of concept
definitions that mentions only situation independent predi-
cates (in (Gu and Soutchanski 2010), DS0

includes DT,st),
while dynamic TBox DT,dyn is an acyclic set of definitions
such that it has occurrences of fluents, but defined fluents are
mentioned only in the RHS of SSAs, and they are eliminated
by the modified regression operator using lazy unfolding.
For example,DT,st may include situation independent static
definitions such as “vehicle is a truck or an airplane”, while
DT,dyn may include convenient situation dependent abbrevi-
ations like Movable(x, s) ≡ Loaded(x, s)∧∃yIn(x, y, s).
The previously mentioned acyclicity assumption originates
in (Baader et al. 2005).

We would like to eliminate a previous assumption that
DT,st is acyclic. For simplicity, let us consider a case
when DT,dyn = ∅. Let D be P such that its initial the-
ory DS0

is augmented with an arbitrary satisfiable static
TBox DT,st that may include general concept inclusions be-
tween ALCO(U) concepts. (This TBox can be expressed as
an ALCO(U) concept.) Then, by the relative satisfiability
theorem from (Pirri and Reiter 1999), Σ ∪ Dap ∪ Dssa ∪
UNA ∪ DS0 ∪ DT,st is satisfiable iff UNA ∪ DS0 ∪ DT,st
is satisfiable, i.e., the presence of a static satisfiable ontol-
ogy is harmless. Moreover, since regression does not af-
fect the predicates without a situation term, in other words,
since axioms in DT,st are invariant wrt the regression op-
erator, it can be used to answer “static” queries and to re-
duce the projection problem to the satisfiability inALCO(U):
Σ ∪ Dap ∪ Dssa ∪ UNA ∪ DS0

∪ DT,st |= Goal iff
UNA ∪ DS0

∪ DT,st |= Goal, when Goal is an L sen-
tence without z-variables that has no occurrences of fluents
(a “static” query), and UNA includes unique name axioms
only for objects. This simple observation is a consequence
of Lemma 1 and the regression theorem from (Pirri and Re-
iter 1999). In addition, inP we can prove that formulas from
L remain to be in L after regression.

Theorem 1 Let D be an L-based BAT (a theory P), φ be
a regressable L formula, and α a ground action. The result
of regressing φ[(do(α, S0)], denoted by R[φ(do(α, S0)], is
a formula uniform in situation S0 that is an L-formula if S0

is suppressed.

This can be proved similarly to Lemma 2 from Section 5.4
in (Gu and Soutchanski 2010) that is proved for a FODL-
based BAT. However, this does not follow directly from (Gu
and Soutchanski 2010; Gu 2010) because in P , SSA for dy-
namic roles may have context conditions, but in (Gu and
Soutchanski 2010; Gu 2010) it was assumed that SSA for
dynamic roles are context free. Also, recall that FODL is a
proper subset of L. The proof is long and laborious because
regression is a syntactic operation, and the SSAs in P may
have several different syntactic forms, but we have to ana-
lyze all cases and show that if we start with a DL-like for-
mula, then after a single step of regression we get a formula
that remains DL-like. As a consequence, for the “dynamic”
queries, we have the following.

Theorem 2 LetD=Σ∪Dap∪Dssa∪UNA∪DS0∪DT,st beP
augmented with a (static) general ALCO(U) TBox , φ(S) be
a regressable z-freeL sentence, and S be a ground situation.
Then the projection problem can be reduced to satisfiability
in ALCO(U):

Σ ∪ Dap ∪ Dssa ∪UNA ∪ DS0
∪ DT,st |= φ(S) iff

UNA ∪ DS0
∪ DT,st |= R[φ(S)]

This follows from Theorem 1 by induction on the length of
the situation term S, from Lemma 1, and from the fact that
UNA ∪ DS0

∪ DT,st can be transformed into an ALCO(U)
concept. The Theorem 2 is important because it shows that
any static ALCO(U) ontology can be seamlessly integrated
with reasoning about actions in P . To the best of our knowl-
edge we are the first to propose this. Our contribution is
important because one may expect that in applications a
static TBox characterizing essential terminological connec-
tions between concepts does not change when actions are
executed, but only fluents can change. Also, one can add
an acyclic dynamic TBox DT,dyn to P without any difficul-
ties, as in (Gu and Soutchanski 2010). However, (Baader et
al. 2005; Liu et al. 2006; Calvanese et al. 2007) and others
argue that a general dynamic TBox leads to serious difficul-
ties. While (Baader et al. 2005) does not consider a general
static TBox DT,st, it could be added, e.g., by internalizing
DT,st into anALCO(U) concept and including it as an ABox
assertion wrt a dummy individual. This trick was not con-
sidered in (Baader et al. 2005), because the universal role
U is required for this trick to work, but U was missing in
(Baader et al. 2005).

Example 1 (Cont.) We would like to adapt for our
purposes an example of a general TBox from the paper
by Giuseppe De Giacomo, Maurizio Lenzerini “TBox
and ABox Reasoning in Expressive Description Logics”,
KR 1996, pages 316-327). Suppose that a TBox has the
following concept inclusions:
dir v ∀dirCh−.(dir t file) u ≤ 1 dirCh.dir
file v ¬dir u ∀dirCh−.⊥
Let DS0

be the following incomplete theory (written in
FOL syntax, but can be easily translated to ALCO(U)):
dir(home) ∧ dir(mes) ∧ dir(root) ∧ dir(wyehia)∧
file(f1) ∧ dirCh(f1,mes) ∧ dirCh(mes, home)∧
file(f2)∧ dirCh(f2, wyehia) ∧ dirCh(wyehia,home)∧
dirCh(home, root) ∧ at(wyehia, f1, S0)∧
∀x.(¬(dir(x) ∨ file(x)) ∨ p(x, on, S0))

The UNA for object constants: f1, f2, home,
mes, off, on, root, wyehia are pairwise distinct. Let the
projection query be whether D ∪ TBox |= found(f1, S),
S = do([back(wyehia, home, f1), forw(home,mes, f1),

find(f1,mes)], S0)).
Then, it is easy to see that the regressed query is

(f1 = f1 ∧ p(mes, on, S0)) ∨ found(f1, S0).
This example demonstrates that we managed to solve the
projection problem in the presence of a general expressive
static TBox. This example BAT has been implemented in
XML, regression of a query was computed using a C++
program, SAT in SROIQ was solved using HERMIT; see at
http://www.scs.ryerson.ca/mes/dl2012.zip
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4 Progression in P
In this section, we use the notion of forgetting about a se-
quence of ground atoms, the notion of progression in SC,
the fact about definability of progression in FOL for local ef-
fect BATs, and notation introduced in (Lin and Reiter 1994;
1997; Liu and Lakemeyer 2009). Recall that P is any L-
based BAT. It is easy to give an example of P with global ef-
fect actions such that progression of DS0 is not definable as
a z-free L sentence. Subsequently, we consider only local-
effect P action theories, and we talk about z-free L sen-
tences that can be transformed into an ALCO(U) concept.
Below, we prove that progression of a z-free L sentence
DS0

is still expressible as a z-free L sentenceDSα
(here and

subsequently, for brevity, we talk about situation-suppressed
sentences). This does not follow from Theorem 3.6 in (Liu
and Lakemeyer 2009) about definability of progression in
FOL for local-effect BATs, since our initial theory DS0 is
formulated in a strict subset of FO2 language, and it is not
obvious at all whether in P progression DSα of DS0 can
still be defined within same language. Since progression in-
volves forgetting about old values of fluents and computing
new values, we need a couple of intermediate lemmas. First,
we show that new fluent values can be expressed in L. Then,
we prove that the result of forgetting about ground fluents in
DS0

affected by a ground action α remains to be a z-free L
sentence.

Lemma 2 Let D be a local effect P , α a ground action,
and Ω(S0) be the characteristic set of α with respect to D.
Then DSS [Ω] is a set of L sentences without occurrences of
z-variables, when the situation terms are suppressed.

The characteristic set Ω(S0) is a set of ground fluents af-
fected by α. Because they change values, we have to forget
their old values. To compute new values for them, we in-
stantiate DSS w.r.t. Ω(S0), do simplification and obtain the
set of sentences F (~t, Sα) ≡ ΦF (~t, α, S0), which are de-
noted as DSS [Ω], where Sα = do(α, S0), and ΦF (~t, α, S0)
is a z-free L sentence representing the RHS of a SSA for the
fluent F . F (~t, Sα) and ΦF (~t, α, S0) mention different situa-
tion terms. However, F (~t, Sα) can never occur in ΦF or any
RHS of SSA of other fluents because they are all uniform
in S0. Also, none of the ground fluents to be subsequently
forgotten are relevant to F (~t, Sα) simply because it is the
value of F in a different situation. Consequently, we can re-
place F (~t, Sα) temporarily by some atom Ft until forgetting
of Ω(S0) is completed, and then put it back while preserving
logical equivalence. The next lemma shows that forgetting
about ground atoms Ω(S0) in an L formula results in an L
formula.

Lemma 3 Let φ be a Fx (or Fy) formula and θ a truth as-
signment to some of the atoms P (~tj) occurring in this for-
mula (if any), then φ[θ] remains a Fx (Fy) formula.

Notation φ[θ] for forgetting about several ground atoms, in-
troduced in (Liu and Lakemeyer 2009), means the result
of replacing every occurrence of an atom P (~x) in φ by

∨m
j=1(~x = ~tj ∧ θ[P (~tj)]) ∨ (

∧m
j=1 ~x 6= ~tj) ∧ P (~x). This

Lemma is proved by induction over structure of φ.

Theorem 3 LetD be a local-effect BAT based on L and α a
ground action. Let Ω(s) be the characteristic set of α. Then
the following formula is a progression of DS0

w.r.t. α and
this formula is an L sentence:∧

UNA ∧
∨

θ∈M(Ω(S0))

(
∧
DS0
∧
∧
DSS [Ω])[θ] (Sα/S0)

Proof : This is a consequence of Lemmas (2), (3) and Theo-
rem 3.6 from (Liu and Lakemeyer 2009). Note that the final
formula is uniform in Sα. This theorem is important for our
work because it shows for P that if an initial theory DS0 is
expressible as an ALCO(U)-like concept, then progression
DSα is also expressible as an ALCO(U)-like concept.

5 Efficient Progression in p+ KB
Theorem 3 shows progression DSα can be translated to
ALCO(U), but in a general case, the size of progression
can be much larger than the size of DS0 . If one wants to
solve the projection problem by computing progression for
a sequence of action, then one has to find special cases of
an initial theory DS0

such that the size of progression re-
mains linear w.r.t. the size of DS0

. (Liu and Lakemeyer
2009) prove that progression is computationally tractable if
an initial DS0

is in proper+ form, where proper+ theo-
ries generalize databases by allowing incomplete disjunctive
knowledge about some of the named elements of the do-
main (Lakemeyer and Levesque 2002). A proper+ knowl-
edge base (KB) is more general than a proper KB, which
is equivalent to a possibly infinite consistent set of ground
literals. We show that in P , if DS0

is a set of proper+ for-
mulas that can be translated intoALCO(U), then progression
of DS0

in our new normal form can be computed efficiently,
and the normal form can be maintained without introducing
any new variables. To achieve this, we show that a KB in our
new normal form remains in the same normal form after for-
getting about old values of fluents. The fact that forgetting
in our normal form KB can be accomplished without intro-
ducing new variables is novelty that does not follow from
(Liu and Lakemeyer 2009).

Let e be an ewff, a well-formed formula whose only pred-
icate is equality, and let a clause d be a disjunction of liter-
als. Recall that the universal closure ∀(e ⊃ d) is called a
guarded clause, or a proper+-formula, and a KB is called
proper+ if it is a finite non-empty set of guarded clauses
supplemented with the axioms of equality and the set of
UNA for constants. We are going to use a p+ normal form
in which forgetting can be accomplished without introduc-
ing new variables. The new form is logically equivalent to
the proper+ normal form, but it is more handy for our pur-
poses. In addition, there is no increase in the size when a
proper+ formula is transformed into p+ form.

Definition 2 We say that a disjunction of guarded clauses∨
i ∀(ei⊃di) is a p+ formula. A p+ KB is a finite set of p+

formulas (plus axioms of equality and UNA for constants).
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We would like to show that a KB in our p+ normal form can
be equivalently transformed into the same normal form after
forgetting about old values of fluents, and none of the in-
termediate logical transformations require introducing new
variables to preserve logical equivalence. Working with p+

KB requires logically equivalent transformations using ∀-
quantifiers applied to disjunctions. To ensure these transfor-
mations do not need fresh variables to preserve equivalence,
we introduce auxiliary technical notions.

Definition 3 Let Si be a set of variables that occur in a
guarded clause ∀(ei ⊃ di). Let S = {S1, S2, ...Sn} be a
collection of these sets such that they are pairwise disjoint.
We call a p+ formula φ =

∨
i ∀(ei⊃ di) separable w.r.t. S

iff for each guarded clause ∀(ei ⊃ di) the free variables of
ei ⊃ di are a subset of one and only one set in S.

Definition 4 Let capacity(S) be the maximum number of
variables in a set from S.

Our goal is to transform a KB into a form such that forget-
ting about a ground atom P (~c) becomes a simple syntactic
operation. Note that the easiest case for forgetting about a
ground atom P (~c) in a formula φirr is when P (~c) is irrele-
vant to φirr, or formally, when forget(φirr, P (~c)) ≡ φirr.
For example, this applies when a formula φirr has no oc-
currences of P . Otherwise, let’s consider a ground (for the
sake of simplicity) KB where all clauses mention a pred-
icate symbol P at most once. Then, using distributivity
((a∨P (~c))∧(b∨P (~c))) ≡ (a∧b∨P (~c)), we can collect all
sub-formulas from clauses that mention P (~c) into a single
conjunction φpos. Similarly, we can collect all sub-formulas
from clauses that mention ¬P (~c) into a single conjunction
φneg . Then, we can use the following simple observation
to forget about P (~c) easily. Let P (~c) be a ground atom,
φpos, φneg , and φirr be sentences to which P (~c) is irrele-
vant, and KB be (P (~c) ∨ φpos) ∧ (¬P (~c) ∨ φneg) ∧ φirr,
Then, forget(KB,P (~c)) = (φpos ∨ φneg)∧ φirr. Now, we
would like to elaborate these observations in the context of
p+ KBs that have ∀-quantifiers. This preliminary discussion
motivates the subsequent developments.

Proposition 1 Let φ=
∨
i ∀(ei⊃di) be a p+ formula. If for

each di and for every P (~t) in di the formula (ei∧~t=~c) is
unsatisfiable, then P (~c) is irrelevant to φ.

We are ready to define a new normal form NF+ that ac-
commodates disjunctions of guarded clauses. Our defi-
nition takes into account separability of variables that is
important for equivalent transformations with ∀ such as
∀y(A(x)∨B(y)) ≡ A(x) ∨ ∀yB(y).

Definition 5 Let K be a p+ KB, S ′ be a collection of
pairwise disjoint sets of variables and P (~c) be a ground
atom. Then, K is in NF+ normal form w.r.t P (~c), called
NF+(K, P (~c)), if K={φ | φ=

∨
i ∀(ei⊃di)} such that

1. each formula φ ∈ K is separable w.r.t. S ′,
2. in each φ ∈ K, for any P (~t) appearing in any di, either ~t

is ~c or (ei ∧ ~t=~c) is unsatisfiable.

The crucial fact is that a p+ KB can be normalized without
introducing new variables.

Theorem 4 Let S be a collection of sets of variables such
that these sets are pairwise disjoint, and capacity(S) =m
for some integer m > 0. Let K be a KB of p+ formulas that
are separable w.r.t. S, and let P (~c) be a ground atom. Then,
K can be transformed into a KB in NF+ normal form w.r.t
P (~c), such that each constituent formula φ =

∨
i ∀(ei⊃di)

is separable w.r.t. a collection S ′ of pairwise disjoint sets of
variables, S ⊆ S ′, and capacity(S ′)=m.

For a given ground atom P (~c), converting a p+ KB into
NF+ produces only three different types of p+ formulas
with sub-formulas φpos, φneg , φirr such that P (~c) is irrele-
vant to them: formula of structure P (~c)∨φpos is called pos-
type formula, formula of structure ¬P (~c)∨φneg is called
neg-type formula, irr-type formulas φirr have no occur-
rences of P (~c). As explained above, forgetting about P (~c)
in NF+ can be easily accomplished. Moreover, we prove
that the KB resulting from forgetting about P (~c) can be eas-
ily transformed back into the p+ KB while preserving ca-
pacity (i.e., without introducing new variables).

Theorem 5 Let S be a collection of sets of variables such
that the sets in each collection are pairwise disjoint, and
capacity(S) =m for some integer m > 0. Let K be a p+

KB of formulas that are separable w.r.t. S, and P (~c) be a
ground atom. Then, the result of forgetting P (~c) in K is a
p+ KB of formulas that are separable w.r.t. a collection of
pairwise disjoint sets of variables S ′ such that S ⊆ S’ and
capacity(S ′)=m.

Since our proof shows that the transformations do not in-
cur any increase in the sizes of the formulas, the complexity
of forgetting is as in (Liu and Lakemeyer 2009): linear w.r.t.
the size of a KB.

Once forgetting has been completed, the maximum num-
ber of variables in any guarded clause does not exceed the
initial capacity(S) of a KB that is transformed back into p+

form. Consequently, we can accomplish forgetting in our
action theory P , if we start with an initial theory DS0

that
is both in p+ normal form and that is a z-free L sentence.
The intersection of these two languages should be expres-
sive enough for applications.

Regarding the connection betweenALCO(U) and p+, it is
clear that the intersection of L and the language for defining
p+ KBs restricts the capacity of guarded clauses to 2 since
ALCO(U) is a fragment of FO2. In P , if context formulas
Fx and Fy are essentially quantifier free (i.e., if context con-
ditions can be simplified to quantifier free formulas), then
DSS [Ω] can be converted to CNF of literals, and then into a
p+ KB. Therefore, by Theorem 3, since DSS [Ω] is O(1) in
size (DSS is a fixed input), the only potentially large input
that matters is DS0 . The number of affected ground fluent
literals that should be forgotten is limited by the structure
of the DSS , i.e., it can be considered a constant. Therefore,
we would apply a constant number of forgetting operations,
each operation increasing the size of DS0

linearly. Overall,
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this yields progression DSα that is linear w.r.t DS0 . Once an
initial theory DS0 has been progressed, the projection prob-
lem can be solved using any ALCO(U) satisfiability solver.

6 Discussion and Future Work
Main contributions of our paper are as follows. First, we
define a logical theory P integrating reasoning about ac-
tion with DLs such that P is more expressive than theo-
ries from (Gu 2010; Gu and Soutchanski 2010). For exam-
ple, in P , there are no restrictions on arity of actions func-
tions. Second, Theorem 2 (regression in P) shouldn’t be
underestimated. It shows existing ontologies (with a gen-
eral ALCO(U) static TBox) can be seamlessly integrated
with P . To the best of our knowledge, this seamless in-
tegration of DLs and reasoning about actions has never
been proposed before. For example, (Baader et al. 2005;
Gu and Soutchanski 2010) allowed only acyclic dynamic
TBox (that can be easily added to P too). Third, Theorem 3
is a new non-trivial statement that doesn’t follow from (Liu
and Lakemeyer 2009). It is important because it guarantees
that progression of ALCO(U) KBs can still be formulated
in the same language, and consequently, one can continue
computing progression for subsequent actions. Fourth, The-
orems 4 and 5 are proved using new techniques. They don’t
follow from (Liu and Lakemeyer 2009), where progression
was studied in FOL.

Our regression in P had been successfully implemented
in XML and C++ (Yehia 2012) and extensively tested on
half a dozen benchmark domains (Kudashkina 2011; Yehia
2012). In (Kudashkina 2011), ADL versions of several
planning specifications (considered as FOL theories, with-
out grounding) have been manually translated from PDDL
(Planning Domains Definition Language) into XML encod-
ing of P . Note that STRIPS planning domains are trivial.
When fluents have more than two object arguments, they
can be rephrased using simpler fluents if arguments vary
over finite ranges: see examples of such transformations in
Section 5.2 of (Gu and Soutchanski 2010). An implementa-
tion of progression in P is ongoing: see the pseudo-code at
http://www.scs.ryerson.ca/mes/dl2012.zip

An approach to integrating DLs and reasoning about ac-
tions proposed in (Baader et al. 2005) inspired a number
of subsequent papers including (Gu and Soutchanski 2010),
where the reader can find extensive comparison and discus-
sion. The approach proposed in (Baader et al. 2005) is ex-
pressive, and it can be used to represent many popular AI ac-
tion theories. However, one can answer only ground projec-
tion queries using their approach, but Theorem 2 shows we
can use regression to answer projection queries with quanti-
fiers over object arguments in fluents. Also, our regression
can be used to solve the projection problem in a BAT where
some actions have global effects, but the approach proposed
in (Baader et al. 2005) can answer projection queries only
in local effect BATs. In any case, it is important to com-
pare our implementations with an implementation based on
(Baader et al. 2005) for the common classes of queries and
theories. An empirical assessment can use a few planning
domains and a number of other benchmarks. The first step
in this direction is taken in (Yehia et al. 2012).

All other related publications are very extensively dis-
cussed in (Baader et al. 2005; Calvanese et al. 2007; Gu and
Soutchanski 2010; Liu et al. 2006).
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