
What Would You Like to Drink? Recognising and Planning
with Social States in a Robot Bartender Domain

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Mary Ellen Foster
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

M.E.Foster@hw.ac.uk

Abstract
A robot coexisting with humans must not only be able
to successfully perform physical tasks, but must also be
able to interact with humans in a socially appropriate
manner. In many social settings, this involves the use of
social signals like gaze, facial expression, and language.
In this paper we discuss preliminary work focusing on
the problem of combining social interaction with task-
based action in a dynamic, multiagent bartending do-
main, using an embodied robot. We discuss how social
states are inferred from low-level sensors, using vision
and speech as input modalities, and present a planning
approach that models task, dialogue, and social actions
in a simple bartending scenario. This approach allows
us to build interesting plans, which have been evaluated
in a real-world study with human subjects, using a gen-
eral purpose, off-the-shelf planner, as an alternative to
more mainstream methods of interaction management.

Introduction
As robots become integrated into daily life, they must in-
creasingly deal with situations in which socially appropri-
ate interaction is vital. In such settings, it is not enough for
a robot simply to achieve task-based goals; instead, it must
also be able to satisfy the social goals and obligations that
arise through interactions with people in real-world settings.

Building a robot to meet the goals of social interaction
presents several challenges, especially for the reasoning, de-
cision making, and action selection components of such a
system. Not only does the robot require the ability to recog-
nise and understand appropriate multimodal social signals
(e.g., gaze, facial expression, and language), but it must also
generate realistic responses using similar modalities.

To address this challenge, we are developing a robot bar-
tender (Figure 1) that is capable of dealing with multiple
customers in a dynamic setting. For the purpose of this pa-
per, we focus on a simple drink-ordering scenario. Interac-
tions in this scenario incorporate a mixture of task-based as-
pects (e.g., ordering and paying for drinks) and social as-
pects (e.g., managing multiple simultaneous interactions).
Moreover, the primary interaction modality is speech; users
communicate with the robot bartender via speech and the
robot must respond in a similar manner.

One approach to high-level reasoning and action selec-
tion is to use automated planning techniques. The ability

Figure 1: The robot bartender

to reason and plan is essential for an intelligent agent act-
ing in a dynamic and incompletely known world such as the
bartending scenario. General purpose, automated planning
techniques are good at building goal-directed plans of ac-
tion under many challenging conditions, especially in task-
based contexts. Recent work (Steedman and Petrick 2007;
Brenner and Kruijff-Korbayová 2008; Benotti 2008; Koller
and Petrick 2011) has also investigated the use of automated
planning for natural language generation and dialogue—an
approach with a long tradition in natural language process-
ing but one that is not the focus of recent, mainstream study.

While planning offers a possible tool for action selec-
tion, real-world domains like the bartender scenario present
challenges for plan generation, execution, and monitoring.
First, the domain is inherently dynamic and certain aspects
of it, such as the initial state, cannot be defined offline (e.g.,
the number of customers in the bar). Instead, they must be
provided to the planner based on observations of the scene
sensed by low-level input modalities such as vision and
speech. Second, plan generation involves a mix of traditional
task-based actions (e.g., handing the customer a drink) and
speech acts (e.g., asking a customer for a drink order). Fi-
nally, monitoring in such a domain is essential: plans can-
not account for all eventualities, so unexpected state changes
and plan failures must be detected and dealt with.

The problem of integrating low-level sensor data with
symbolic planners introduces representational difficulties
that must be overcome. While sensors tend to generate con-
tinuous streams of low-level, noisy data, high-level planning

69

Cognitive Robotics
AAAI Technical Report WS-12-06

A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 2: The scenario: “Two people walk into a bar”.

systems typically use representations based on discrete mod-
els of objects, properties, and actions, described in logical
languages. Furthermore, some parts of the state may not
be observable. Thus, a central task necessary for support-
ing high-level planning in social domains (as in other robot
domains) is appropriate state recognition and management.

We focus on three main areas in this paper.

• First, we show how states with task, dialogue, and social
features are derived from low-level sensor observations.

• Using these states, we show how plans are generated by
modelling the problem as an instance of planning with
incomplete information and sensing using a planner called
PKS (Petrick and Bacchus 2002; 2004), as an alternative
to more mainstream methods of interaction management.

• Finally, we present an embarrassingly simple planning
domain that models an initial bartending scenario. This
domain has been evaluated in a real-world study, and pro-
vides the basis for future work currently underway.

This work forms part of a larger project called JAMES, Joint
Action for Multimodal Embodied Social Systems, exploring
social interaction with embodied robot systems.1

The rest of the paper is organised as follows: first, we
present an overview of the bartending scenario and the robot
system; we then describe the state manager and show how
states are inferred from low-level sensor data; the high-level
planner and execution monitor are then presented, along
with a description of the planning domain and example plans
in the bartending scenario. We conclude by discussing re-
lated work, and extensions to our work currently underway.

Overview of the Scenario and Robot System
In the bartending scenario we discuss in this paper, we sup-
port interactions like the one shown in Figure 2: two cus-
tomers enter the bar area and attempt to attract the robot’s
attention and order a drink. Even this simple interaction
presents challenges: the vision system must accurately track
the locations and body postures of the agents; the speech-
recognition system must detect and deal with speech in an
open setting; the reasoning components must determine that
the both customers require attention and should ensure that
they are served in the order that they arrived; while the out-
put components must select and execute concrete actions for
each output channel that correctly realises high-level plans.

1See http://james-project.eu/ for more information.

Figure 3: System architecture

The robot hardware consists of a pair of manipulator arms
with grippers, mounted to resemble human arms, along with
an animatronic talking head capable of producing facial ex-
pressions, rigid head motion, and lip-synchronised synthe-
sised speech. The software architecture (Figure 3) is based
on a standard three-layer structure: the low-level compo-
nents deal with modality-specific, detailed information such
as spatial coordinates, speech-recognition hypotheses, and
robot arm trajectories; the mid-level components deal with
more abstract, cross-modality representations of states and
events; while the high level reasons about abstract structures,
such as knowledge and action in a logical form.

The low-level input components include a vision system
and a linguistic processing system. The vision system tracks
the location, facial expressions, gaze behaviour, and body
language of all people in the scene in real time, while the
linguistic processing system combines a speech recogniser
with a natural-language parser to create symbolic represen-
tations of the speech produced by all users. Low level output
components control the animatronic head (which produces
lip-synchronised synthesised speech, facial expressions, and
gaze behaviour) and the robot manipulator arms (which can
point at, pick up, and manipulate objects in the scene).

The primary mid-level input component is the social state
manager, which combines information from various low-
level input components to estimate the real-time social and
communicative state of all users in the scene. On the output
side, the main mid-level component is the output planner,
which both translates the fleshed-out communicative acts
into specific action sequences for the low-level components
and coordinates the execution of those sequences.

Finally, the high level includes a planner that generates
goal-directed plans for the robot. Plans include a mixture of
task actions (e.g., manipulating objects in the world), sens-
ing actions (e.g., using the robot arms to test object proper-
ties), and communicative actions (e.g., attracting a user’s at-
tention, asking for a drink order). The high-level system also
includes a monitor which tracks the execution of planned ac-
tions, detects plan failures, and controls replanning.

In the remainder of this paper, we concentrate on the op-
eration of the mid-level and high-level components.

State Management
The primary role of the state manager is to turn the contin-
uous stream of messages produced by the low-level input

70

and output components into a discrete representation of the
world, the robot, and all entities in the scene, combining so-
cial, dialogue, and task-based properties. The resulting state
is used in two distinct ways in the system processing. On the
one hand, the state manager provides a persistent, queryable
interface to the state: for example, it stores the world coordi-
nates of all entities as reported by the vision system so that
the robot is able to gaze at a particular agent when needed.
On the other hand, it also informs the planner and the exe-
cution monitor whenever there is a relevant state change.

A model of state management
At a formal level, we can model the operation of the state
manager as follows. The low-level system components cor-
respond to a set Σ of sensors, Σ = {σ1, σ2, . . . , σn}, where
each sensor σi returns an observation obs(σi) about some
aspect of the world. If appropriate, a primary sensor (such
as a speech recogniser or a body-pose estimator) may have
an associated sensor that indicates the estimated reliability
of the observation, capturing the fact that real-world sensors
generally produce noisy results.

The state representation is based on a set F of fluents,
F = { f1, f2, . . . , fm}: first-order predicates and functions that
denote particular qualities of the world, robot, and entities.
The value fi,t of a fluent fi at a particular time point t is a
function of the observations returned by the sensor set, along
with the set of fluent values from the previous time point;
i.e., fi,t = Γi(Σ, Ft−1). Typically, each fluent depends on a
subset of the sensor observations, and the mapping is not ex-
clusive: any given sensor may map to zero, one, or many flu-
ents as appropriate. Including the previous state in the func-
tion permits fluents with Markov-like properties, where the
value is dependent on the immediate interaction history.

A state is then a snapshot Ft of the values of all instanti-
ated fluents at a time t during the interaction. States represent
a point of intersection between the low-level data produced
by the sensors and the high-level representations needed by
the planner and the execution monitor, since states are in-
duced from a set of sensor observations and the correspond-
ing sensor/fluent mappings (i.e., the functions Γi).

The set Σ of available sensors is defined by the low-level
system components, while the set F of required fluents is
provided by the high-level reasoning system. Implementing
the state manager therefore consists primarily of defining the
set of mapping functions Γi. In the context of social robotics,
this is the problem of social signal processing (Vinciarelli,
Pantic, and Bourlard 2009), which is a topic that has re-
ceived an increasing amount of attention in recent years. The
most common technique is to use labelled data to train su-
pervised learning models such as Support Vector Machines
(SVMs) to classify the sensor data; this often requires the
use of signal processing and feature extraction to convert the
sensor data into a form suitable for SVM training.

A crucial issue is modelling the temporal dynamics of
user behaviour: often, it is not the sensor data in any single
frame that determines the value of a state fluent, but rather
the patterns found in a sequence of signals. Also, when de-
termining the value of fluents that combine information from
multiple signals, the relevant information may not occur si-

multaneously, so temporal cross-modal fusion is necessary.
It is for these reasons that the previous state Ft−1 is included
as an argument to the Γi functions, as mentioned above.

In addition to maintaining and updating the representation
of the state, the state manager must also decide when to pub-
lish updated state reports to the rest of the system. That is,
it must decide which changes to the state are “interesting”.
This choice is often not clear-cut: while small fluctuations
in the sensed location of an individual entity are probably
not worth informing the rest of the system about, and the
appearance or disappearance of an entity is likely to be in-
teresting, there is a whole space of decisions between these
two extremes. In practice, this decision is generally made on
an application-specific basis.

State management in the robot bartender
In the robot system, we consider each low-level input com-
ponent to be made up of a number of sensors, as follows.
The linguistic interpreter corresponds to two primary sen-
sors: one that observes the parsed content of the recognised
speech, and another that returns the estimated angle of the
sound source. Both of these sensors also have associated
confidence scores, which are represented as additional sen-
sors in the model. On the other hand, the vision system
senses a large number of properties about the agents and
objects in the world, including the location, face and torso
orientation, and body posture, and therefore corresponds to
numerous individual sensors, again with confidence scores.

As well as the input components, the low-level output
components are also included in the model as additional sen-
sors. So, for example, the robot arms provide information
about the start and end of any manipulation actions as well
as indications of success or failure, while the speech synthe-
siser reports the start and end of all utterances produced by
the system. Modelling the output components as additional
sensors allows information from these sources to be included
in the state (e.g., the success or failure of physical world ac-
tions), and also ensures that the state always accurately re-
flects the current state of turn-taking in the interaction (i.e.,
whether the robot is currently moving and/or speaking).

The state fluents are defined by the requirements of the
scenario (Figure 2): we represent all agents in the scene, and
keep track of their location, torso orientation, and attentional
state, along with their drink request if they have made one. In
addition, we also store the coordinates of all sensed entities
and other properties from the vision system to enable the
low-level output components to access them as necessary.

In the current system, the state manager is rule-based. One
set of rules infers user social states (e.g., seeking attention)
based on the low-level sensor data, using guidelines derived
from the study of human-human interactions in the bartender
domain (Huth 2011). The state manager also incorporates
rules that map from the logical forms produced by the parser
into communicative acts (e.g., drink orders), and that use the
source localisation from the speech recogniser together with
the vision properties to determine which customer is likely
to be speaking. A final set of rules determine when new state
reports are published, which helps control turn-taking.

71

In subsequent versions of the system, the state manage-
ment component will be enhanced to support more complex
scenarios: this will involve processing more complex mes-
sages from the updated input and output components, in-
cluding taking into account the associated confidence scores,
and also dealing with the more complex state representa-
tions that will be required by the updated high-level reason-
ing system. Dealing with this more complex setting will re-
quire defining much more complicated mapping functions.
To address this, we will make use of supervised learning
techniques trained on data gathered from humans interacting
with both real and artificial bartenders, using methods sim-
ilar to those employed, for example, by (Kapoor, Burleson,
and Picard 2007) and (Bohus and Horvitz 2009).

Planning and Execution Monitoring
The high-level planner is responsible for taking state reports
from the state manager and producing actions that are ex-
ecuted on the robot platform as speech, head motions, and
effector manipulations. A related component, the execution
monitor, is responsible for tracking the execution of planned
actions, to ensure the high-level goals of the system are be-
ing met. In the case of action failures or significant plan di-
vergences, alternative actions must be planned as necessary.

In this work we use the PKS planner (Petrick and Bac-
chus 2002; 2004) for action selection, and a new monitor
developed for PKS to control plan execution and replanning
activities. All actions in the bartending domain (i.e., task, di-
alogue, and social) are modelled as part of the same under-
lying planning domain, rather than using specialised tools
as is common practice in modern interactive dialogue sys-
tems. Thus, all high-level action selection is determined by
the same general purpose planning mechanism.

Planning with Knowledge and Sensing (PKS)
PKS (Planning with Knowledge and Sensing) is a condi-
tional planner that constructs plans in the presence of in-
complete information and sensing actions. PKS works at
the “knowledge-level” by reasoning about how the planner’s
knowledge state, rather than the world state, changes due to
action. PKS works with a restricted subset of a first-order
language, and a limited amount of inference, allowing it to
support a rich representation with features such as functions
and variables. This approach differs from planners that work
with possible worlds models or belief states. However, as
a trade-off, its restricted representation means that certain
types of knowledge cannot be directly modelled in PKS.

PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS, the
planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of
knowledge (especially disjunctions) that it can represent:

Kf : This database is like a STRIPS database except that
both positive and negative facts are permitted and the closed
world assumption is not applied. Kf is used for modelling ac-
tion effects that change the world. Kf can include any ground
literal `, where ` ∈ Kf means “the planner knows `.” Kf can
also contain known function (in)equality mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the planner
either “knows φ or knows ¬φ,” and that at execution time
this disjunction will be resolved.
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv
can model the plan-time effects of sensing actions that re-
turn constants. Kv can contain any unnested function term f ,
where f ∈ Kv means that at plan time the planner “knows
the value of f .” At execution time the planner will have def-
inite information about f ’s value. As a result, PKS is able to
use Kv terms as “run-time variables” (Etzioni et al. 1992) or
placeholders in its plans, and can also form certain types of
conditional branches using such information.
Kx: This database models the planner’s “exclusive-or”
knowledge of literals, namely that the planner knows “ex-
actly one of a set of literals is true.” Entries in Kx have the
form (`1|`2| . . . |`n), where each `i is a ground literal. Such
formulae represent a particular type of disjunctive knowl-
edge that is common in many planning scenarios, namely
that “exactly one of the `i is true.”
(A fifth database that stores “local closed world” informa-
tion (Etzioni, Golden, and Weld 1994) is not used here.)

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state, namely whether facts are (not) known to
be true (a query of the form [¬]K(φ)), whether function
values are (not) known (a query [¬]Kv(t)), or if the plan-
ner “knows whether” certain properties are true or not (a
query [¬]Kw(φ)). An inference algorithm evaluates primi-
tive queries by checking the contents of the databases, taking
into consideration knowledge from different databases.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of effects
that update the state. Action preconditions are simply a list
of primitive queries. Action effects are described by a col-
lection of STRIPS-style “add” and “delete” operations that
modify the contents of individual databases. E.g., add(Kf , φ)
adds φ to Kf , and del(Kw, φ) removes φ from Kw.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to the state to produce a new
knowledge state. Planning then continues from the result-
ing state. PKS can also build plans with branches, by con-
sidering the possible outcomes of its Kw and Kv knowledge.
Planning continues along each branch until it satisfies the
goal conditions, also specified as a list of primitive queries.

PKS is aided by an execution monitor which controls re-
planning. The monitor takes as input a PKS plan, whose ex-
ecution it tracks, and a state description denoting the sensed
state, in this case provided by the state manager. The task

72

of the monitor is to assess how close an expected, planned
state is to a sensed state in order to determine whether a plan
should continue to be executed. To do this, it tries to ensure
that a state still permits the next (n) action(s) in the plan to be
executed, by testing an action’s preconditions against sensed
properties. In the case of a mismatch, the planner is directed
to build a new plan, using the sensed state as its initial state.

A simple bartending domain
A PKS planning domain for the bartending scenario de-
scribes the domain’s properties and actions, denoting par-
ticular features of the world, agents, and objects. Domain
properties are divided into two types: predicates and func-
tions. In this case, the planning domain properties are based
on similar fluents defined in the state manager. In particular,
predicates in the planning domain include:
• seeksAttn(?a): agent ?a seeks attention,
• greeted(?a): agent ?a has been greeted,
• ordered(?a): agent ?a has ordered,
• served(?a): agent ?a has been served,
• otherAttnReq: other agents are seeking attention,
• badASR(?a): agent ?a was not understood, and
• transEnd(?a): the transaction with ?a has ended.
Two functions are also defined:
• inTrans = ?a: the robot is interacting with ?a, and
• request(?a) = ?d: agent ?a has requested drink ?d.
We use a typed version of the domain with two types: agent
and drink. All predicate arguments accept constants of type
agent, while inTrans maps to type agent, and request
takes an argument of type agent and maps to type drink.

Actions in the bartending domain use domain properties
to describe their preconditions and effects. Our domain in-
cludes seven high-level actions:
• greet(?a): greet an agent ?a,
• ask-drink(?a): ask agent ?a for a drink order,
• serve(?a,?d): serve drink ?d to agent ?a,
• bye(?a): end an interaction with agent ?a,
• not-understand(?a): alert agent ?a that its utterance

was not understood,
• wait(?a): tell agent ?a to wait, and
• ack-wait(?a): thank agent ?a for waiting.
Definitions for the first five actions (the actions required for
single agent interactions) are given in Figure 4. Actions are
described at an abstract level and include a mix of physi-
cal, sensory, and speech acts. For instance, serve is a stan-
dard planning action with a deterministic effect (i.e., it adds
definite knowledge to the planner’s Kf database); however,
when executed at the robot level it causes the robot to hand
over a drink to an agent and confirm the drink order through
speech. Actions like greet and bye are modelled in a simi-
lar way as serve but only map to speech output at the robot
level (e.g., “hello” and “good-bye”). The most interesting
action is ask-drink which is modelled as a sensing action
in PKS: the function term request is added to the planner’s
Kv database as an effect, indicating that the mapping for this
piece of information will become known at execution time.

action greet(?a : agent)
preconds: K(inTrans = nil) & -K(greeted(?a)) &

K(seeksAttn(?a)) & -K(ordered(?a)) &
-K(otherAttnReq) & -K(badASR(?a))

effects: add(Kf,greeted(?a)),
add(Kf,inTrans = ?a)

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) & -K(ordered(?a))

-K(otherAttnReq) & -K(badASR(?a)) &
effects: add(Kf,ordered(?a)),

add(Kv,request(?a))

action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) & K(ordered(?a)) &

Kv(request(?a)) & K(request(?a) = ?d)
-K(otherAttnReq) & -K(badASR(?a)) &

effects: add(Kf,served(?a))

action bye(?a : agent)
preconds: K(inTrans = ?a) & K(served(?a)) &

-K(otherAttnReq) & -K(badASR(?a))
effects: add(Kf,transEnd(?a)),

add(Kf,inTrans = nil)

action not-understand(?a : agent)
preconds: K(inTrans = ?a) & K(badASR(?a))
effects: del(Kf,badASR(?a))

Figure 4: PKS actions in a single agent interaction

The not-understand action is used as a directive to the
speech output system to produce an utterance that (hope-
fully) causes the agent to repeat its last response. The wait
and ack-wait actions are used to control interactions when
multiple agents are seeking the attention of the bartender.

Most of the domain properties act as state markers for
the actions, to help guide the interaction through a type of
standard “script” (i.e., an interaction begins with greet and
ends with bye). These properties map to their counterparts
provided by the state manager. However, since dialogue is
inherently noisy there are still opportunities for things to go
wrong, and for plans in this domain to exhibit interesting
behaviour, even though the domain model is quite simple.

Example plans in the bartending domain
We now consider some example plans we can generate in
the above domain. However, in order to do so we require a
description of the domain’s initial state and goal, in addition
to the above action definitions. The initial state, which in-
cludes a list of the objects (drinks) and agents (customers)
in the bar, is not hard-coded in the domain description. In-
stead, this information is supplied to the planner by the state
manager. Changes in the object or agent list are also sent
to the planner, causing it to update its domain model. The
inTrans function is initially set to nil to indicate that the
robot isn’t interacting with any agents. The planner’s goal is
simply to serve each agent seeking attention, represented as:
forallK(?a : agent)

K(seeksAttn(?a)) => K(transEnd(?a)).
This goal is viewed as a rolling target which is reassessed
each time PKS receives a state report from the state manager.

73

Ordering a drink: In our first example, we consider the
case where there is a single agent a1. No specific drinks
are defined and no other state information is supplied, ex-
cept that the robot is not interacting with any agent (i.e.,
inTrans = nil ∈ Kf). The appearance of a1 seeking at-
tention is reported to the planner in an initial state report,
which has the effect of adding a new constant named a1 of
type agent to the planner’s domain description, and adding
a new fact seeksAttn(a1) to the initial Kf database. Us-
ing this initial state and the above actions, PKS can build the
following plan to achieve the goal:

greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1). [End the transaction]

Initially, the planner can choose the greet(a1) action
since inTrans = nil ∈ Kf and seeksAttn(a1) ∈ Kf ,
and the other preconditions are trivially satisfied (i.e.,
none of greeted(a1), ordered(a1), otherAttnReq,
or badASR(a1) are in Kf). After greet(a1), the plan-
ner is in a state where inTrans = a1 ∈ Kf and
greeted(a1) ∈ Kf . The ask-drink(a1) action can
now be chosen, updating PKS’s knowledge state so that
ordered(a1) ∈ Kf and request(a1) ∈ Kv. Consider the
serve(a1,request(a1)) action. Since inTrans = a1
remains in Kf , the first precondition of the action is satis-
fied. Since ordered(a1) ∈ Kf , the second precondition,
K(ordered(a1)), holds. Also, since request(a1) ∈ Kv,
the third precondition Kv(request(a1)) holds (i.e., the
value of request(a1) is known). The fourth precondi-
tion, K(request(a1)=request(a1)) is trivially satisfied
since both sides of the equality are syntactically equal; this
also has the effect of binding request(a1) to serve’s sec-
ond parameter. The remaining two preconditions are triv-
ially satisfied. Thus, request(a1) acts as a run-time vari-
able whose definite value (i.e., a1’s drink order) will become
known after action execution. The action updates Kf so that
served(a1) ∈ Kf , leaving Kv unchanged. Finally, bye(a1)
is added to the plan resulting in inTrans = nil ∈ Kf and
transEnd(a1) ∈ Kf , satisfying the goal.

Ordering a drink with restricted choice: The above plan
relies on PKS’s ability to use known function terms as run-
time variables in parameterised plans. However, doing so re-
quires additional reasoning, potentially slowing down plan
generation in domains where many such properties must
be considered. Furthermore, it does not restrict the possible
mappings for request, except that it must be a drink.

Consider a second example, where there is again a single
agent a1 seeking attention but the planner is also told there
are three possible drinks that can be ordered: juice, water,
and beer. In this case, the drinks are represented as new PKS
constants of type drink, i.e., juice, water, and beer. In-
formation about the possible drinks is also put into PKS’s
initial Kx database as the formula (request(a1)=juice|
request(a1)=water|request(a1)=beer). In terms of
PKS’s knowledge, this restricts the set of possible mappings
for request(a1). PKS can now build a plan of the form:

greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
branch(request(a1)) [Form branching plan]
K(request(a1)=juice): [If order is juice]
serve(a1,juice) [Serve juice to a1]

K(request(a1)=water): [If order is water]
serve(a1,water) [Serve water to a1]

K(request(a1)=beer): [If order is beer]
serve(a1,beer) [Serve beer to a1]

bye(a1). [End the transaction]

In this case, a conditional plan is built. After the drink is
ordered, the possible values for request(a1) are tested
by creating a plan branch for each possible mapping.
Each branch considers a state where the planner has def-
inite knowledge of one mapping. E.g., in the first branch
request(a1)=juice is assumed to be in the Kf database;
in the second branch request(a1)=water is in Kf ; and so
on. Planning continues in each branch under each assump-
tion. (We note that this type of branching was only possible
because the planner had initial Kx knowledge that restricted
request(a1), combined with Kv knowledge provided by
the ask-drink action.) Along each branch, an appropriate
serve action is added to deliver the appropriate drink. In
more complex domains (currently under development), each
branch may require different actions to serve a drink, such as
putting the drink in a special glass or interacting further with
the agent (i.e., “would you like ice in your water?”).

When things go wrong: Once a plan has been built, it is
sent for execution by the robot, one action at a time. Each
high-level action is divided into speech, head motion, and
manipulation behaviours using a simple rule-based system
before they are executed in the real world. After execution
has started, PKS’s execution monitor is used to assess plan
correctness by comparing subsequent state reports from the
state manager against states predicted by the planner. In the
case of disagreement, for instance due to unexpected out-
comes like action failure, the planner is invoked to construct
a new plan using the sensed state as its new initial state. This
method is particularly useful for responding to unexpected
responses by agents interacting with the bartender.

For example, if the planner receives a report that a1’s
response to ask-drink(a1) was not understood, for in-
stance due to low-confidence speech recognition, the state
report sent to PKS will have no value for request(a1),
and badASR(a1) will also appear. This will be detected by
the monitor and PKS will be directed to build a new plan.
One result is a modified version of the original plan that first
informs a1 they were not understood before repeating the
ask-drink action and continuing the old plan:

not-understand(a1), [Alert a1 it was not understood]
ask-drink(a1), [Ask a1 again for drink order]
...continue with remainder of old plan...

Thus, replanning produces a loop that repeats an action in an
attempt to obtain the information the planner requires.

Another useful consequence of this approach is that cer-
tain types of over-answering by the interacting agent can be
handled by the execution monitor through replanning. For

74

instance, a greet(a1) action by the bartender might cause
the customer to respond with an utterance that includes a
drink order. In this case, the state manager would include an
appropriate request(a1) mapping in the state description,
along with ordered(a1). The monitor would detect that the
preconditions for ask-drink(a1) aren’t met and would di-
rect PKS to replan. A new plan could then omit ask-drink
and instead proceed to serve the requested drink to the agent.

Ordering drinks with multiple agents: Our simple plan-
ning domain also enables more than one agent to be served
if the state manager reports multiple customers are seeking
attention. For instance, say that there are two agents, a1 and
a2 (as in Figure 2). One possible plan that might be built is:
wait(a2), [Tell agent a2 to wait]
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1), [End a1’s transaction]
ack-wait(a2), [Thank a2 for waiting]
ask-drink(a2), [Ask a2 for drink order]
serve(a2,request(a2)), [Give the drink to a2]
bye(a2). [End a2’s transaction]

Thus, a1 orders a drink and is served, followed by a2. The
wait and ack-wait actions (which aren’t required in the
single agent case) are used to defer a transaction with a2
and resume it when the transaction with a1 has finished.
(The otherAttnReq property, which is a derived property
defined in terms of seeksAttn, ensures that other agents
seeking attention are told to wait before an agent is served.)

One drawback with our current domain encoding is that
agents who have been asked to wait are not necessarily
served in the order they are deferred. From a task achieve-
ment point of view, plans in this domain might still achieve
the goal of serving drinks to all agents seeking attention.
However, from a social interaction point of view they poten-
tially fail to be appropriate (depending on local pub culture),
since some agents may be served before other agents that
have been waiting for longer periods of time.

Such a scenario is certainly possible in our bartending do-
main, where the appearance of a new agent is dynamically
reported to the planner by the state manager, possibly trig-
gering a replanning operation: the newly built plan might
“preempt” an already waiting agent for a newly-arrived
agent as the next customer for the bartender to serve. Since
socially appropriate interactions are central to the goals of
this work, we are addressing this issue by modifying our do-
main description to introduce an ordering on waiting agents.

Discussion and Related Work
We have carried out a user evaluation in which 31 partici-
pants interacted with the bartender in a range of social sit-
uations, resulting in a wide range of objective and subjec-
tive measures. Overall, most customers were successful in
obtaining a drink from the bartender in all scenarios, and
the robot dealt appropriately with multiple simultaneous
customers and with unexpected situations including over-
answering and input-processing failure. The factors that had
the greatest impact on subjective user satisfaction were task

success and dialogue efficiency. More details of the user
study are presented in (Foster et al. 2012).

The general focus of this work fits into the active research
area of social robotics: “the study of robots that interact
and communicate with themselves, with humans, and with
their environment, within the social and cultural structure
attached to their roles.” (Ge and Matarić 2009) Most cur-
rent social robots play the role of a companion, often in a
long-term relationship with the user, e.g., (Breazeal 2005;
Dautenhahn 2007; Castellano et al. 2010). In such a context,
the primary goal for the robot is to engage in social inter-
action for its own sake, and to build a relationship with the
user: the robot is primarily an interactive partner, and any
task-based behaviour is secondary to this overall goal.

We build on this recent work, but address a different style
of interaction, which is distinctive in two main ways. First,
while existing projects generally consider social interaction
as the primary goal, the robot bartender supports social com-
munication in the context of a cooperative, task-based inter-
action. Second, while most social robotics systems deal pri-
marily with one-on-one interactive situations, the robot bar-
tender must deal with dynamic, multi-party scenarios: peo-
ple will be constantly entering and leaving the scene, so the
robot must constantly choose appropriate social behaviour
while interacting with a series of new partners.

Natural language generation and dialogue also have long
traditions of using planning. Early approaches to genera-
tion as planning (Perrault and Allen 1980; Appelt 1985;
Young and Moore 1994) focused primarily on high-level
structures, such as speech acts and discourse relations, but
suffered due to the inefficiency of the planners available
at the time. As a result, recent mainstream research has
tended to segregate task planning from discourse and dia-
logue planning, capturing the latter with more specialised
approaches such as finite state machines, information state
approaches, speech-act theories, dialogue games, or theories
of textual coherence (Traum and Allen 1992; Green and Car-
berry 1994; Matheson, Poesio, and Traum 2000; Beun 2001;
Asher and Lascarides 2003; Maudet 2004).

There has also been a renewed interest in applying mod-
ern planning techniques to problems in generation, such as
sentence planning (Koller and Stone 2007), instruction giv-
ing (Koller and Petrick 2011), and accommodation (Benotti
2008). The idea of using planning for interaction manage-
ment has also being revisited, by viewing the problem as an
instance of planning with incomplete information and sens-
ing actions (Stone 2000). This view is also implicit in early
BDI-based approaches, e.g., (Litman and Allen 1987; Brat-
man, Israel, and Pollack 1988; Cohen and Levesque 1990;
Grosz and Sidner 1990). Initial work using PKS explored
this connection (Steedman and Petrick 2007), but fell short
of implementing a tool to leverage this relationship for ef-
ficient dialogue planning. A related approach (Brenner and
Kruijff-Korbayová 2008) managed dialogues by interleaving
planning and execution, but failed to solve the consequent
problem of deciding when best to commit to plan execution
versus plan construction. Thus, many planning approaches
are promising, but not yet fully mature, and fall outside the
mainstream of recent natural language dialogue research.

75

Conclusions and Future Work
In this paper we have discussed initial work aimed at com-
bining social interaction with task-based action in a dy-
namic, multiagent bartending domain, using an embodied
robot. Action selection uses the off-the-shelf PKS planner,
combined with a social state manager and plan monitor. Al-
though this work is preliminary, it has resulted in a work-
ing system that has been evaluated with human users. We
are currently extending this work to more complex scenar-
ios in the bartending domain, including agents that can ask
questions about drinks, a bartender that can query agents for
more information, agents that can order multiple drinks, and
situations where the bartender or an agent may terminate an
interaction early. We believe a general-purpose planning ap-
proach offers a potential solution to the problem of action
selection in task-based interactive systems, as an alternative
to more specialised approaches, such as those used in many
mainstream natural language dialogue systems.

Acknowledgements
The authors would like to thank their colleagues from the
JAMES consortium who helped implement the bartender
system described in this paper: Andre Gaschler and Manuel
Giuliani from fortiss Gmbh, Maria Pateraki from the Foun-
dation for Research and Technology–Hellas, and Amy Is-
ard and Richard Tobin from the University of Edinburgh.
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement No. 270435.

References
Appelt, D. 1985. Planning English Sentences. Cambridge, Eng-
land: Cambridge University Press.
Asher, N., and Lascarides, A. 2003. Logics of Conversation. Cam-
bridge University Press.
Benotti, L. 2008. Accommodation through tacit sensing. In Pro-
ceedings of LONDIAL-2008, 75–82.
Beun, R.-J. 2001. On the generation of coherent dialogue. Prag-
matics and Cognition 9:37–68.
Bohus, D., and Horvitz, E. 2009. Dialog in the open world: plat-
form and applications. In Proceedings of the 2009 International
Conference on Multimodal Interfaces (ICMI-MLMI 2009), 31–38.
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and resource-
bounded practical reasoning. Computational Intelligence 4:349–
355.
Breazeal, C. 2005. Socially intelligent robots. interactions
12(2):19–22.
Brenner, M., and Kruijff-Korbayová, I. 2008. A continual multi-
agent planning approach to situated dialogue. In Proceedings of
LONDIAL-2008, 67–74.
Castellano, G.; Leite, I.; Pereira, A.; Martinho, C.; Paiva, A.; and
McOwan, P. W. 2010. Affect recognition for interactive compan-
ions: challenges and design in real world scenarios. Journal on
Multimodal User Interfaces 3(1):89–98.
Cohen, P., and Levesque, H. 1990. Rational interaction as the basis
for communication. In Cohen, P.; Morgan, J.; and Pollack, M., eds.,
Intentions in Communication. MIT Press. 221–255.

Dautenhahn, K. 2007. Socially intelligent robots: dimensions of
human-robot interaction. Philosophical Transactions of the Royal
Society B: Biological Sciences 362(1480):679–704.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with incomplete
information. In Proceedings of KR-1992, 115–125.
Etzioni, O.; Golden, K.; and Weld, D. 1994. Tractable closed world
reasoning with updates. In Proceedings of KR-1994, 178–189.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Foster, M. E.; Gaschler, A.; Giuliani, M.; Isard, A.; Pateraki, M.;
and Petrick, R. P. A. 2012. “Two people walk into a bar”: Dynamic
multi-party social interaction with a robot agent. In submission.
Ge, S. S., and Matarić, M. J. 2009. Preface. International Journal
of Social Robotics 1(1):1–2.
Green, N., and Carberry, S. 1994. A hybrid reasoning model for
indirect answers. In Proceedings of ACL-94, 58–65. ACL.
Grosz, B., and Sidner, C. 1990. Plans for discourse. In Intentions
in Communication. MIT Press. 417–444.
Huth, K. 2011. Wie man ein Bier bestellt. Master’s thesis, Univer-
sität Bielefeld.
Kapoor, A.; Burleson, W.; and Picard, R. W. 2007. Automatic pre-
diction of frustration. International Journal of Human-Computer
Studies 65(8):724–736.
Koller, A., and Petrick, R. P. A. 2011. Experiences with plan-
ning for natural language generation. Computational Intelligence
27(1):23–40.
Koller, A., and Stone, M. 2007. Sentence generation as planning.
In Proceedings of the ACL, 336–343.
Litman, D., and Allen, J. 1987. A plan recognition model for
subdialogues in conversation. Cognitive Science 11:163–200.
Matheson, C.; Poesio, M.; and Traum, D. 2000. Modeling ground-
ing and discourse obligations using update rules. In Proceedings of
NAACL 2000.
Maudet, N. 2004. Negotiating language games. Autonomous
Agents and Multi-Agent Systems 7:229–233.
Perrault, C. R., and Allen, J. F. 1980. A plan-based analysis of in-
direct speech acts. American Journal of Computational Linguistics
6(3–4):167–182.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proceedings of AIPS-2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In Proc. of ICAPS-2004, 2–11.
Steedman, M., and Petrick, R. P. A. 2007. Planning dialog actions.
In Proceedings of SIGdial 2007, 265–272.
Stone, M. 2000. Towards a computational account of knowl-
edge, action and inference in instructions. Journal of Language
and Computation 1:231–246.
Traum, D., and Allen, J. 1992. A speech acts approach to ground-
ing in conversation. In Proceedings of ICSLP-92, 137–140.
Vinciarelli, A.; Pantic, M.; and Bourlard, H. 2009. Social sig-
nal processing: Survey of an emerging domain. Image and Vision
Computing 27(12):1743–1759.
Young, R. M., and Moore, J. D. 1994. DPOCL: a principled ap-
proach to discourse planning. In Proceedings of the 7th Interna-
tional Workshop on Natural Language Generation, 13–20.

76

