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Abstract

Multi-agent path finding has been proven to be a
PSPACE-hard problem. Generating such a centralised
multi-agent plan can be avoided, by allowing agents
to plan their paths separately. However, this results in
an increased number of collisions and agents must re-
plan frequently. In this paper we present a framework
for multi-agent path planning, which allows agents to
plan independently and solve conflicts locally when
they occur. The framework is a generalisation of the
CQ-learning algorithm which learns sparse interactions
between agents in a multi-agent reinforcement learning
setting. 1

Introduction
The goal of multi-agent path planning is to navigate agents
from a starting position to their respective goals, while
avoiding each other and any static obstacles that may be
present in the environment. Compared to single agent path
planning, one major additional problem arises: the number
of states and actions grows exponential in the number of
agents. The multi-agent path finding problem is PSPACE
hard (Hopcroft, Schwartz, and Sharir 1984). This makes
generating one plan for all agents at once intractable for all
but the smallest number of agents. This problem occurs in
various application domains such as robotics (Bennewitz,
Burgard, and Thrun 2002), air traffic control (Pallottino et
al. 2007), disaster rescue (Kitano et al. 1999) and computer
games (Silver 2005).

In multi-agent reinforcement learning (MARL) a novel
paradigm has been developed, called sparse interactions
(Melo and Veloso 2010). The idea of this framework is to
learn the situations in which agents influence each other and
how to handle these conflict situations as they occur. In all
other situations, agents can act independently, ignoring the
other agents. The principle is shown graphically in Figure 1.

This paper describes how the principles of a concrete
MARL algorithm that learns these sparse interactions,
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1Originally published as “Learning multi-agent state space
representations”. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS),
715722.

Figure 1: Decomposition of path planning into independent
planning for non-conflict situations and multi-agent plan-
ning for situations where agent can collide.

named CQ-learning (De Hauwere, Vrancx, and Nowé 2010),
can be used in multi-agent path finding.

Learning conflict situations
The main idea of the framework presented here is that as
long as agents are not being influenced, i.e. they do not col-
lide with each other, they can act independently. If a col-
lision occurs, the agents are to solve the problem locally.
After the conflict is resolved, the agents can continue acting
independently and follow their individual plan again.

The problem of single agent planning has already been
extensively explored and many efficient approaches already
exist that can solve this problem (LaValle 2006). In this pa-
per we assume that agents can plan their paths from their ini-
tial locations to their respective goals in the scenario where
no other agents are present in the environment, i.e. they act
individually in the environment. This initial plan can be gen-
erated offline, or online through learning algoritms. The only
requirement is that agents are aware of the post-conditions
of every action they take in this single agent setting. When
multiple agents are acting together and planning a path to
the goal, they follow their single agent plan, and verify that
the post-conditions are still valid. This means that there was
no influence from other agents. A statistical test2 on these
conditions is used to identify potential influences and in-
forms the agent when to switch to a multi-agent plan. These
post-conditions could be the distance traveled during the last
timestep, the time needed to travel, a signal informing the
agent whether its last navigation action was succesfull. Or
in reinforcement learning or dynamic programmic context
this is the value function of a state. If these post-conditions
are statistical significantly different compared to the single-

2In the experiments we used a Student’s t-test.
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Figure 2: Evolution of conflict detection and action selection
in CQ-learning/planning

Figure 3: Trace of a solution found by CQ-learning in a two-
agent environment

agent plan, the agent changes it state space representation to
include the information of the conflicting agent. This means
that in these states the agent will learn or plan using a multi-
agent approach.

This local problem solving approach favors the agent to
find a quick solution to the conflict by augmenting the state
information for planning. In the next state, if the conflict is
resolved it can follow its individual plan again as shown in
Figure 2.

Experiments
We tested CQ-learning in several maze environments in
(De Hauwere, Vrancx, and Nowé 2010) and we illustrate a
sample solution found in one of these environments contain-
ing two agents, see Figure 3. Their initial positions are given
by the X, their respective goals, marked by the letter G in the
corresponding color. Actions taken, following the individual
plan are marked by arrows with full tails, whereas actions
taken using augmented state information are indicated with
dotted tails. Agent 1 (in red) uses a multi-agent approach
during time steps 4 to 7, after which it follows its individual
plan again. Agent 2 uses a multi-agent approach during time
step 6. It acts independent during the rest of the episode.

Conclusion
In this abstract we described how CQ-learning could be
used in a multi-agent path planning context. CQ-learning
is a MARL algorithm capable of exploiting independent

experience in a multi-agent environment to learn a multi-
agent policy using sparse interactions. This is done by
means of statistical tests to determine if there are changes
in the outcome of a navigation action by an agent If this
is the case, the state space in which agents are planning or
learning is augmented to include the location of the other
agent, such that it can use a multi-agent planning tech-
nique. This techniques allows for two extensions. The first
is that these conflict states can be generalized and trans-
ferred to other agents/environments (De Hauwere, Vrancx,
and Nowé 2010). The second is that by performing the sta-
tistical test on long term post-conditions, conflicts can be
identified several timesteps ahead of the actual problem sit-
uation (De Hauwere, Vrancx, and Nowé 2011).
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